Hydrogen is a possible alternative to fossil fuels in achieving a sustainable energy future. Unlike other, older energy sources, the suitability of materials for storing, distributing, and sealing systems in a hydrogen environment has not been comprehensively studied. Aging, the extended exposure of a material to an environmental condition, with hydrogen causes degradation and damage to materials that differ from other technologies. Improved understanding of the physical and chemical mechanisms of degradation due to a gaseous hydrogen atmosphere allows us to better select and develop materials that are best suited to carrier and sealing applications. Damage to materials from aging is inevitable with exposure to high-pressure hydrogen. This review discusses the specific mechanisms of different categories of aging of storage and sealing materials in a hydrogen environment. Additionally, this article discusses different laboratory test methods to simulate each type of aging. It covers the limitations of current research in determining material integrity through existing techniques for aging experiments and explores the latest developments in the field. Important improvements are also suggested in terms of material development and testing procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608210 | PMC |
http://dx.doi.org/10.3390/ma16206689 | DOI Listing |
Sci Rep
January 2025
School of Geosciences, Yangtze University, Wuhan, 430100, Hubei, China.
As many oil and gas reservoirs approach depletion stages in the future, alongside growing energy storage demands, constructing gas storage facilities becomes critical for ensuring a stable natural gas supply. Consequently, a comprehensive geological analysis is essential to evaluate the feasibility of converting depleted gas reservoirs into gas storage facilities. The W gas reservoir in the Sichuan Basin, China, is nearing depletion and presents potential for conversion into a gas storage facility.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China. Electronic address:
Tissue adhesives have attracted significant interest in the field of hemostasis. However, challenges including weak tissue adhesion, inadequate biocompatibility, and instability limit their clinical applications. Here, we have developed a gelatin-DOPA-knob/fibrinogen hydrogel inspired by the fibrin polymerization and mussel adhesion, resulting in a biocompatible bioadhesive with outstanding adhesion performance and great storage stability.
View Article and Find Full Text PDFHuman mesenchymal stromal cells (MSCs) are attractive for both medical practice and biomedical research. Nonfreezing short-term storage may provide safe and simple transportation and promote the practical use of MSCs. We aimed to determine the duration of efficient storage at ambient temperature (22°C) of human dermal MSCs in different three-dimensional organization and to investigate the role of cell metabolic mode in the resistance to the ambient storage damaging factors.
View Article and Find Full Text PDFAdv Mater
December 2024
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m, burst pressure of 514 mmHg, and swelling ratio of <4%).
View Article and Find Full Text PDFACS Omega
December 2024
VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo, FI-02044, VTT, Finland.
Radiocarbon analysis of nuclear waste produced in nuclear facilities lacks fast, in situ detection methods. Moreover, the amount of radiocarbon desorbing from graphitic waste is not well known. In this study, we demonstrate the use of mid-infrared cavity ring-down spectroscopy combined with an automatic sample processing unit as a method to examine radiocarbon concentration in three types of nuclear waste: spent ion-exchange resin, graphite, and graphite outgassing in sealed storage crates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!