The International Maritime Organization (IMO) is tightening regulations on air pollutants. Consequently, more LNG-powered ships are being used to adhere to the sulfur oxide regulations. Among the tank materials for storing LNG, 9% nickel steel is widely used for cryogenic tanks and containers due to its high cryogenic impact toughness and high yield strength. Hence, numerous studies have sought to predict 9% nickel steel welding distortion. Previously, a methodology to derive the optimal parameters constituting the Goldak welding heat source for arc welding was developed. This was achieved by integrating heat transfer finite element analysis and optimization algorithms. However, this process is time-consuming, and the resulting shape of the weld differs by ~15% from its actual size. Therefore, this study proposes a simplified model to reduce the analysis time required for the arc welding process. Moreover, a new objective function and temperature constraints are presented to derive a more sophisticated heat source model for arc welding. As a result, the analysis time was reduced by ~70% compared to that previously reported, and the error rates of the weld geometry and HAZ size were within 10% and 15% of the actual weld, respectively. The findings of this study provide a strategy to rapidly predict welding distortion in the field, which can inform the revision of welding guidelines and overall welded structure designs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608328 | PMC |
http://dx.doi.org/10.3390/ma16206647 | DOI Listing |
Sci Rep
January 2025
Engineering Research Center of Flexible Radiation Protection Technology, Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China.
The impact of light radiation, a predominant energy release mechanism in nuclear explosions, on material properties is of critical importance. This investigation employed an artificial light source to replicate the effects of nuclear explosion radiation and utilized a physical information neural network (PINN) to examine the temperature evolution and corresponding changes in the mechanical properties of carbon fiber/epoxy composites (CFEC). A light source simulating nuclear explosion's light radiation was built to irradiate the CFEC, then measure the reflection spectrum and temperature of samples.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.
View Article and Find Full Text PDFInt J Occup Saf Ergon
January 2025
College of Fashion and Design, Donghua University, China.
In wildland firefighting, the air gap (AG) between clothing and the human body can effectively decrease heat transferred to skin but has a negative impact on thermal aging of clothing. Heat transfer to skin from a fire source can led to burn injuries and heat is transmitted between adjacent AGs parallel to the skin surface. An open AG simulator was developed to explore the dual effects of the AG on fabric thermal aging and skin thermal protection.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada. Electronic address:
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
Forging additive hybrid manufacturing integrated the high efficiency of forging and the great flexibility of additive manufacturing, which has significant potential in the construction of reactor pressure vessels (RPVs). In the components, the heat-affected zone (HAZ, also called as bonding zone) between the forged substrate zone and the arc deposition zone was key to the final performance of the components. In this study, the Mn-Mo-Ni welding wire was deposited on the 16MnD5 substrate with a submerged arc heat source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!