Enhancing Visual Feedback Control through Early Fusion Deep Learning.

Entropy (Basel)

Faculty of Automatic Control and Computer Engineering, "Gheorghe Asachi" Technical University of Iasi, D. Mangeron 27, 700050 Iasi, Romania.

Published: September 2023

A visual servoing system is a type of control system used in robotics that employs visual feedback to guide the movement of a robot or a camera to achieve a desired task. This problem is addressed using deep models that receive a visual representation of the current and desired scene, to compute the control input. The focus is on early fusion, which consists of using additional information integrated into the neural input array. In this context, we discuss how ready-to-use information can be directly obtained from the current and desired scenes, to facilitate the learning process. Inspired by some of the most effective traditional visual servoing techniques, we introduce early fusion based on image moments and provide an extensive analysis of approaches based on image moments, region-based segmentation, and feature points. These techniques are applied stand-alone or in combination, to allow obtaining maps with different levels of detail. The role of the extra maps is experimentally investigated for scenes with different layouts. The results show that early fusion facilitates a more accurate approximation of the linear and angular camera velocities, in order to control the movement of a 6-degree-of-freedom robot from a current configuration to a desired one. The best results were obtained for the extra maps providing details of low and medium levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606400PMC
http://dx.doi.org/10.3390/e25101378DOI Listing

Publication Analysis

Top Keywords

early fusion
16
visual feedback
8
visual servoing
8
current desired
8
based image
8
image moments
8
extra maps
8
enhancing visual
4
control
4
feedback control
4

Similar Publications

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Barcoded Hybrids of Extracellular Vesicles and Lipid Nanoparticles for Multiplexed Analysis of Tissue Distribution.

Adv Sci (Weinh)

January 2025

Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 43150, Sweden.

Targeted delivery of therapeutic agents is a persistent challenge in modern medicine. Recent efforts in this area have highlighted the utility of extracellular vesicles (EVs) as drug carriers, given that they naturally occur in bloodstream and tissues, and can be loaded with a wide range of therapeutic molecules. However, biodistribution and tissue tropism of EVs remain difficult to study systematically.

View Article and Find Full Text PDF

Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer of steadily growing incidence. Its diagnostic and follow-up rely on the analysis of clinical biomarkers and 18F-Fluorodeoxyglucose (FDG)-PET/CT images. In this context, we target the problem of assisting in the early identification of high-risk DLBCL patients from both images and tabular clinical data.

View Article and Find Full Text PDF

Background And Objective: As the global population ages, degenerative spinal disorders are on the rise, leading to an increased focus on optimizing spinal fusion therapies. Despite the high success rate of iliac crest bone autografts, their usage is hampered by donor site morbidity and limited supply. The objective of this review is to assess the viability of ceramic-based synthetic materials as alternatives in spinal fusion surgeries.

View Article and Find Full Text PDF

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!