Entropy of Charge Inversion in DNA including One-Loop Fluctuations.

Entropy (Basel)

Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA.

Published: September 2023

The entropy and charge distributions have been calculated for a simple model of polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed correlation-driven behavior of DNA in charged solutions, including charge inversion and condensation. In our model, the condensed polyelectrolytes are taken to be doubly charged dimers of length comparable to the distance between sites along the phosphate chains. Within this lattice gas model, each adsorption site is assumed to have either a vacancy or a positively charged dimer attached with the dimer oriented either parallel or perpendicular to the double-helix DNA chain. We find that the inclusion of the fluctuation terms decreases the entropy by ∼50% in the weak-binding regime. There, the bound dimer concentration is low because the dimers are repelled from the DNA molecule, which competes with the chemical potential driving them from the solution to the DNA surface. Surprisingly, this decrease in entropy due to correlations is so significant that it overcompensates for the entropy increase at the mean-field level, so that the total entropy is even lower than in the absence of interactions between lattice sites. As a bonus, we present a transparent exposition of the methods used that could be useful to students and others wishing to use this formulation to extend this calculation to more realistic models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606583PMC
http://dx.doi.org/10.3390/e25101373DOI Listing

Publication Analysis

Top Keywords

entropy charge
8
charge inversion
8
entropy
6
dna
6
inversion dna
4
dna including
4
including one-loop
4
one-loop fluctuations
4
fluctuations entropy
4
charge distributions
4

Similar Publications

High-entropy layered double hydroxides tailor Pt electron state for promoting acidic hydrogen evolution reaction.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:

Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes.

View Article and Find Full Text PDF

Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution.

Heliyon

January 2025

Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).

View Article and Find Full Text PDF

The utilization of polyoxometalate-based materials is largely dictated by their redox properties. Detailed understanding of the thermodynamic and kinetic efficiency of charge transfer is therefore essential to the development of polyoxometalate-based systems for target applications. Toward this end, we report electrochemical studies of a series of heteroatom-doped Keggin-type polyoxotungstate clusters [PWO] ( ), [VWO] ( ), [P(VW)O] ( ), and [V(VW)O] ( ) to elucidate the role of the identity and spatial location of heteroatoms and overall cluster charge on the rate constants of electron transfer and redox reaction entropies.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

Understanding Catalyst 'Volcano' Dependence Through Fermi-Level Controlled Kinetics Using Electronic Theory.

Entropy (Basel)

November 2024

Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, ID 83415, USA.

The ubiquitous two-step Michaelis-Menten and Temkin-Boudart reaction mechanisms are extended to include the influence of the catalyst electronic subsystem in a 5-step mechanism. The resulting kinetic equation provides an alternative explanation for the well-known volcano-shaped dependence found in catalysis. The equilibrium constants of fast electronic steps are highlighted for their influence on adsorption and desorption through the relative concentration of charged versus neutral intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!