Energy-based models (EBMs) assign an unnormalized log probability to data samples. This functionality has a variety of applications, such as sample synthesis, data denoising, sample restoration, outlier detection, Bayesian reasoning and many more. But, the training of EBMs using standard maximum likelihood is extremely slow because it requires sampling from the model distribution. Score matching potentially alleviates this problem. In particular, denoising-score matching has been successfully used to train EBMs. Using noisy data samples with one fixed noise level, these models learn fast and yield good results in data denoising. However, demonstrations of such models in the high-quality sample synthesis of high-dimensional data were lacking. Recently, a paper showed that a generative model trained by denoising-score matching accomplishes excellent sample synthesis when trained with data samples corrupted with multiple levels of noise. Here we provide an analysis and empirical evidence showing that training with multiple noise levels is necessary when the data dimension is high. Leveraging this insight, we propose a novel EBM trained with multiscale denoising-score matching. Our model exhibits a data-generation performance comparable to state-of-the-art techniques such as GANs and sets a new baseline for EBMs. The proposed model also provides density information and performs well on an image-inpainting task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606347PMC
http://dx.doi.org/10.3390/e25101367DOI Listing

Publication Analysis

Top Keywords

denoising-score matching
16
data samples
12
sample synthesis
12
energy-based models
8
multiscale denoising-score
8
data denoising
8
data
7
matching
5
learning energy-based
4
models
4

Similar Publications

Digital holography can reconstruct the amplitude and phase information of the target light field. However, the reconstruction quality is largely limited by the size of the hologram. Multi-plane holograms can impose constraints for reconstruction, yet the quality of the reconstructed images continues to be restricted owing to the deficiency of effective prior information constraints.

View Article and Find Full Text PDF

Score mismatching for generative modeling.

Neural Netw

July 2024

South China University of Technology, Guangzhou, 510006, Guangdong, China. Electronic address:

We propose a new score-based model with one-step sampling. Previously, score-based models were burdened with heavy computations due to iterative sampling. For substituting the iterative process, we train a standalone generator to compress all the time steps with the gradient backpropagated from the score network.

View Article and Find Full Text PDF

Protein-ligand binding prediction is a fundamental problem in AI-driven drug discovery. Prior work focused on supervised learning methods using a large set of binding affinity data for small molecules, but it is hard to apply the same strategy to other drug classes like antibodies as labelled data is limited. In this paper, we explore unsupervised approaches and reformulate binding energy prediction as a generative modeling task.

View Article and Find Full Text PDF

Energy-based models (EBMs) assign an unnormalized log probability to data samples. This functionality has a variety of applications, such as sample synthesis, data denoising, sample restoration, outlier detection, Bayesian reasoning and many more. But, the training of EBMs using standard maximum likelihood is extremely slow because it requires sampling from the model distribution.

View Article and Find Full Text PDF

In sampling-based Bayesian models of brain function, neural activities are assumed to be samples from probability distributions that the brain uses for probabilistic computation. However, a comprehensive understanding of how mechanistic models of neural dynamics can sample from arbitrary distributions is still lacking. We use tools from functional analysis and stochastic differential equations to explore the minimum architectural requirements for $\textit{recurrent}$ neural circuits to sample from complex distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!