GIP_HUMAN [22-51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22-51] in ApoE-/- mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22-51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22-51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22-51] suppressed insulin ( and ) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22-51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22-51] was unable to suppress mRNA expression. Moreover, GIP_HUMAN [22-51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22-51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22-51] suppresses insulin expression and secretion in pancreatic β cells without affecting β cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22-51] on insulin secretion are glucose-dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606481PMC
http://dx.doi.org/10.3390/genes14101910DOI Listing

Publication Analysis

Top Keywords

gip_human [22-51]
48
ins-1e cells
16
pancreatic islets
16
cell proliferation
16
gip_human
12
expression secretion
12
insulin secretion
12
[22-51]
11
glucose-dependent insulinotropic
8
insulinotropic polypeptide
8

Similar Publications

GIP_HUMAN [22-51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22-51] in ApoE-/- mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22-51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets.

View Article and Find Full Text PDF

GIP_HUMAN[22-51] is a new proatherogenic peptide identified by native plasma peptidomics.

Sci Rep

July 2021

Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.

We recently established a new plasma peptidomic technique and comprehensively identified a large number of low-molecular weight and low-abundance native peptides using a single drop of human plasma. To discover a novel polypeptide that potently modulates the cardiovascular system, we performed a bioinformatics analysis of the large-scale identification results, sequentially synthesized the selected peptide sequences, tested their biological activities, and identified a 30-amino-acid proatherogenic peptide, GIP_HUMAN[22-51], as a potent proatherosclerotic peptide hormone. GIP_HUMAN[22-51] has a common precursor with the glucose-dependent insulinotropic polypeptide (GIP) and is located immediately N-terminal to GIP.

View Article and Find Full Text PDF

Asymmetry of GPCR oligomers supports their functional relevance.

Trends Pharmacol Sci

September 2011

Inserm, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France.

G protein-coupled receptors (GPCRs) can exist as dimers or as larger oligomeric clusters that enable intercommunication between different receptor protomers within the same complex. This phenomenon is observed at three distinct levels: (i) at the level of ligand binding where the activation of one protomer can allosterically inhibit or facilitate ligand binding to the second protomer; (ii) at the level of ligand-induced conformational switches, which occur between transmembrane domains of the two protomers; and (iii) within GPCR-associated protein complexes, either directly at the level of GPCR-interacting proteins or at further downstream levels of the complex. Intercommunication at these different levels introduces asymmetry within GPCR dimers wherein each protomer fulfills its specific task.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are key transmembrane recognition molecules for regulatory signals such as light, odors, taste hormones, and neurotransmitters. In addition to activating guanine nucleotide binding proteins (G proteins), GPCRs associate with a variety of GPCR-interacting proteins (GIPs). GIPs contain structural interacting domains that allow the formation of large functional complexes involved in G protein-dependent and -independent signaling.

View Article and Find Full Text PDF

GPCR-interacting proteins (GIPs): nature and functions.

Biochem Soc Trans

November 2004

LGF, UPR CNRS 2580, 141 rue de la Cardonille, 34094 Montpellier, Cedex 5, France.

The simplistic idea that seven transmembrane receptors are single monomeric proteins that interact with heterotrimeric G-proteins after agonist binding is definitively out of date. Indeed, GPCRs (G-protein-coupled receptors) are part of multiprotein networks organized around scaffolding proteins. These GIPs (GPCR-interacting proteins) are either transmembrane or cytosolic proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!