The luminescent and photophysical properties of the etioporphyrin-I complex with indium(III) chloride, InCl-EtioP-I were experimentally studied at room and liquid nitrogen temperatures in pure and mixed toluene solutions. At 77 K, in a 1:2 mixture of toluene with diethyl ether, the quantum yield of phosphorescence reaches 10.2%, while the duration of phosphorescence is 17 ms. At these conditions, the ratio of phosphorescence-to-fluorescence integral intensities is equal to 26.1, which is the highest for complexes of this type. At 298 K, the quantum yield of the singlet oxygen generation is maximal in pure toluene (81%). Quantum-chemical calculations of absorption and fluorescence spectra at temperatures of 77 K and 298 K qualitatively coincide with the experimental data. The InCl-EtioP-I compound will further be used as a photoresponsive material in thin-film optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606598 | PMC |
http://dx.doi.org/10.3390/ijms242015168 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
Hunan Academy of Forestry, Changsha 410004, China.
To clarify the response mechanism of exogenous paclobutrazol on drought resistance in seedlings, we investigated the effects of spraying different concentrations of paclobutrazol (25, 50, 100 mg·L) on the photosynthetic and antioxidant systems of 2-year-old seedlings under drought stress using natural drought method. The results showed that drought stress significantly reduced the photosynthesis and broke the dynamic balance of antioxidant system in seedlings. Spraying with different concentrations of paclobutrazol effectively alleviated the negative impacts of drought stress, and enhanced the defense capability of photosynthetic and antioxidant systems, with the 100 mg·L paclobutrazol treatment being the most effective.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Zanjan, PO Box 38791-45371 Zanjan, Iran.
The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.
View Article and Find Full Text PDFACS Nano
December 2024
Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.
We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!