Effect of Wet-Dry Cycling on Properties of Natural-Cellulose-Fiber-Reinforced Geopolymers: A Short Review.

Molecules

College of Light-Industry and Textile Engineering, Qiqihar University, Qiqihar 161006, China.

Published: October 2023

To study the long-term properties of cement-based and geopolymer materials exposed to outdoor environments, wet-dry cycles are usually used to accelerate their aging. The wet-dry cycling can simulate the effects of environmental factors on the long-term properties of the composites under natural conditions. Nowadays, the long-term properties of geopolymer materials are studied increasingly deeply. Unlike cement-based materials, geopolymers have better long-term properties due to their high early strength, fast hardening rate, and wide range of raw material sources. At the same time, natural cellulose fibers (NCFs) have the characteristics of abundant raw materials, low price, low carbon, and environmental protection. The use of NCFs as reinforcements of geopolymer matrix materials meets the requirements of sustainable development. In this paper, the types and properties of NCFs commonly used for geopolymer reinforcement and the polymerization mechanism of geopolymer matrix materials are summarized. By analyzing the properties of natural-cellulose-fiber-reinforced geopolymers (NCFRGs) under non-wet-dry cycles and NCFRGs under wet-dry cycles, the factors affecting the long-term properties of NCFRGs under wet-dry cycles are identified. Meanwhile, the degradation mechanism and mechanical properties of NCFRG composites after wet-dry cycles are analyzed. In addition, the relationship between the properties of composites and the change of microstructure of fiber degradation is further analyzed according to the results of microscopic analysis. Finally, the effects of wet-dry cycles on the properties of fibers and geopolymers are obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608933PMC
http://dx.doi.org/10.3390/molecules28207189DOI Listing

Publication Analysis

Top Keywords

long-term properties
20
wet-dry cycles
20
properties
11
wet-dry cycling
8
properties natural-cellulose-fiber-reinforced
8
natural-cellulose-fiber-reinforced geopolymers
8
geopolymer materials
8
factors long-term
8
properties composites
8
geopolymer matrix
8

Similar Publications

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

Nano Lett

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Primary cutaneous amoebiasis is rare, and typically affects immunocompromised patients and presents with unique clinical and histopathologic changes. Untreated, the infection could progress to involve the central nervous system, which is almost universally fatal. We present a case of primary cutaneous acanthamoebiasis in a patient with chronic lymphocytic leukemia on acalabrutinib.

View Article and Find Full Text PDF

Background: Synapses can modify their strength in response to activity, and the unique properties of synapses that regulate their plasticity are essential for memory. Long-term potentiation (LTP) is considered the physiological basis for how neurons encode new memories. A complex series of postsynaptic signaling events in LTP is associated with memory deficits in tauopathy models, but the mechanism by which pathogenic tau inhibits plasticity at synapses is unknown.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, College Station, Texas, USA., College Station, TX, USA.

Background: Current treatments for Alzheimer's disease (AD) lack disease-modifying interventions. Hence, novel therapies capable of restraining AD progression and maintaining better brain function for extended periods after the initial diagnosis have great significance. Extracellular vesicles (EVs) from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) are attractive in this context due to their robust antiinflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!