In this research, we focused on the production of amylose-lipid nanocomposite material (ALN) through a green synthesis technique utilizing high-speed homogenization. Our aim was to investigate this novel material's distinctive physicochemical features and its potential applications as a low-glycemic gelling and functional food ingredient. The study begins with the formulation of the amylose-lipid nanomaterial from starch and fatty acid complexes, including stearic, palmitic, and lauric acids. Structural analysis reveals the presence of ester carbonyl functionalities, solid matrix structures, partial crystallinities, and remarkable thermal stability within the ALN. Notably, the ALN exhibits a significantly low glycemic index (GI, 40%) and elevated resistance starch (RS) values. The research extends to the formulation of ALN into nanocomposite hydrogels, enabling the evaluation of its anthocyanin absorption capacity. This analysis provides valuable insights into the rheological properties and viscoelastic behavior of the resulting hydrogels. Furthermore, the study investigates anthocyanin encapsulation and retention by ALN-based hydrogels, with a particular focus on the influence of pH and physical cross-link networks on the uptake capacity presenting stearic-acid (SA) hydrogel with the best absorption capacity. In conclusion, the green-synthesized (ALN) shows remarkable functional and structural properties. The produced ALN-based hydrogels are promising materials for a variety of applications, such as medicine administration, food packaging, and other industrial purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608987 | PMC |
http://dx.doi.org/10.3390/molecules28207154 | DOI Listing |
Chem Biodivers
January 2025
Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.
This study presents, for the first time, the comparison of behavior between two commonly found plant species, their extracts, and their major constituents (glucose and sucrose constituting over 70% of their dried extract) to synthesize zinc oxide (ZnO) nanoparticles (NPs) from zinc nitrate hexahydrate. The findings underscore the critical role of sugars as key constituents in facilitating this synthesis. This research demonstrates that the process can occur at relatively low temperatures (120°C).
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan 411105, P.R. China.
The challenge of "false positive" signals significantly complicates tumor localization and surgical resection, which are pivotal for successful tumor surgeries. Therefore, the development of a method for preoperative tumor localization and intraoperative margin determination holds considerable promise for improving surgical outcomes. In this study, a zero-crosstalk ratiometric tumor-targeting near-infrared (NIR) fluorescent probe was developed for precise cancer diagnosis and intraoperative navigation via NIR fluorescence imaging.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
Background: NETosis is recognized as an important source of autoantigens. Therefore, we hypothesized whether the pristane-induced lupus mice model shows early activation of neutrophils, the presence of low-density granulocytes (LDGs), and neutrophil extracellular traps (NETs) release, which could contribute to the development of a lupus phenotype.
Methods: Twelve female wild-type Balb/c mice were intraperitoneally injected with pristane (n = 6; pristane group) or saline (n = 6; control group).
Appl Biochem Biotechnol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan.
The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!