Developing a variety of safe and effective functioning wound dressings is a never-ending objective. Due to their exceptional antibacterial activity, biocompatibility, biodegradability, and healing-promoting properties, functionalized chitosan nanocomposites have attracted considerable attention in wound dressing applications. Herein, a novel bio-nanocomposite membrane with a variety of bio-characteristics was created through the incorporation of zinc oxide nanoparticles (ZnONPs) into amine-functionalized chitosan membrane (Am-CS). The developed ZnO@Am-CS bio-nanocomposite membrane was characterized by various analysis tools. Compared to pristine Am-CS, the developed ZnO@Am-CS membrane revealed higher water uptake and adequate mechanical properties. Moreover, increasing the ZnONP content from 0.025 to 0.1% had a positive impact on antibacterial activity against Gram-positive and Gram-negative bacteria. A maximum inhibition of 89.4% was recorded against , with a maximum inhibition zone of 38 ± 0.17 mm, and was achieved by the ZnO (0.1%)@Am-CS membrane compared to 72.5% and 28 ± 0.23 mm achieved by the native Am-CS membrane. Furthermore, the bio-nanocomposite membrane demonstrated acceptable antioxidant activity, with a maximum radical scavenging value of 46%. In addition, the bio-nanocomposite membrane showed better biocompatibility and reliable biodegradability, while the cytotoxicity assessment emphasized its safety towards normal cells, with the cell viability reaching 95.7%, suggesting its potential use for advanced wound dressing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608820PMC
http://dx.doi.org/10.3390/molecules28207034DOI Listing

Publication Analysis

Top Keywords

bio-nanocomposite membrane
20
membrane
9
amine-functionalized chitosan
8
antibacterial activity
8
wound dressing
8
dressing applications
8
am-cs developed
8
developed zno@am-cs
8
maximum inhibition
8
bio-nanocomposite
5

Similar Publications

Developing a variety of safe and effective functioning wound dressings is a never-ending objective. Due to their exceptional antibacterial activity, biocompatibility, biodegradability, and healing-promoting properties, functionalized chitosan nanocomposites have attracted considerable attention in wound dressing applications. Herein, a novel bio-nanocomposite membrane with a variety of bio-characteristics was created through the incorporation of zinc oxide nanoparticles (ZnONPs) into amine-functionalized chitosan membrane (Am-CS).

View Article and Find Full Text PDF

The present work aimed to fabricate a set of hybrid bioactive membrane in the form of bio-nanocomposite films for dental applications using the casting dissolution procedures. The formulation of the targeted materials was consisting of cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes with a general abbreviation CA-HAP-BG-SWCNTs. The nanocomposites were characterized using XRD, FTIR, SEM-EDX and Raman spectroscopy.

View Article and Find Full Text PDF

Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: A review.

Int J Biol Macromol

December 2021

Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Nanocomposite and bio-nanocomposite polymer materials/membranes have fascinated prominent attention in the energy as well as the medical sector. Their composites make them appropriate choices for various applications in the medical, energy and industrial sectors. Composite materials are subject of interest in the polymer industry.

View Article and Find Full Text PDF

Bio-nanocomposites-based packaging materials have gained significance due to their prospective application in rising areas of packaged food. This research aims to fabricate biodegradable packaging films based upon polyvinyl alcohol (PVA) and starch integrated with metal-organic frameworks (MOFs) or organic additives. MOFs offer unique features in terms of surface area, mechanical strength, and chemical stability, which make them favourable for supporting materials used in fabricating polymer-based packaging materials.

View Article and Find Full Text PDF

Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films.

Int J Biol Macromol

July 2021

Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

This study explores the preparation of corn starch (CS) films incorporated with nanocellulose fiber (NCF) and different concentrations of thymol (0.1, 0.3, and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!