Lipid droplets (LDs) targeting probes are important for investigating the biological functions of LDs. The interplay between LDs and some other organelles can help to further understand the biological functions of these organelles. However, it is still a challenge to design functional probes that can specifically target LDs and are responsive to some other organelles. Herein, a multifunctional aggregation-induced emission luminogen (AIEgen), namely the TPA-CN, was prepared by the simple aldimine condensation reaction for lipid droplet-specific imaging and tracing. TPA-CN can be sensitively responsive to the acid environment of lysosomes due to the pH-response detachable connector in TPA-CN. With the assistance of this characteristic, it can be concluded from the fluorescence imaging and co-localization analysis results that the internalization of TPA-CN and the targeting of LDs does not involve the lysosome and the lysosomal escape process. At last, the TPA-CN was successfully used for the high-sensitivity imaging of dynamic information of LDs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608981 | PMC |
http://dx.doi.org/10.3390/molecules28207029 | DOI Listing |
J Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune (411008), Maharashtra, India.
In this study, we investigated the aggregation-induced delayed fluorescence (AIDF) properties of three luminogens - TN, TA, and TP. Our comprehensive theoretical analysis reveals a significant reduction in the Δ in their aggregated or solid-state, activating TADF, on a ∼μs time-scale. Additionally, these luminogens demonstrate two-photon excited anti-Stokes photoluminescence emission and improved photocurrent generation, attributed to their strong charge transfer characteristics and longer singlet exciton lifetimes.
View Article and Find Full Text PDFInfected burn wounds are characterized by persistent drug-resistant bacterial infection coupled with an inflammatory response, impeding the wound-healing process. In this study, an intelligent nanoparticle system (CCM+TTD@ZIF-8 NPs) was prepared using curcumin (CCM), an aggregation-induced emission luminogens (TTD), and ZIF-8 for infection-induced wound healing. The CCM+TTD@ZIF-8 NPs showed multiple functions, including bacteria targeting, fluorescence imaging and pH response-guided photodynamic therapy (PDT), and anti-inflammatory.
View Article and Find Full Text PDFProg Biomed Eng (Bristol)
December 2024
School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China.
Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!