A number of data indicate that the sources of different kinds of PDAC may be discovered at the transcription/transduction stage. RNA metabolism is manipulated at various steps by different RNA-binding proteins (RBPs), and the deregulation or irregular activity of RBPs is known to contribute to tumor promotion and progression. The insulin-like growth factor 2 mRNA-binding protein family (IMPs), and IMP1 in particular, has been linked with a poor prognosis in PDAC patients; however, little is known about its contribution in PDAC carcinogenesis. In this study, we investigated the function of IMP1 in PDAC. To evaluate IMP1 expression and correlation with PDAC prognosis, we utilized several public databases. Using a specific siRNA IMP1, we analyzed cell death and cell cycle progression in PDAC cell lines and 3D spheroids. The role of IMP1 was also evaluated in vivo in a Panc-1-derived tumor xenograft murine model. Public data suggest that PDAC patients with higher expression of IMP1 showed poor overall and progression-free survival. IMP1 silencing leads to reduced cell growth in PDAC cells and three-dimensional spheroids. Abrogation of IMP1 in PDAC cells showed lower levels of , increased phosphorylation of the cyclin-dependent kinase (CDK)2, and accumulation of PDAC cells in the G1 phase. Immunoprecipitation experiments revealed that IMP1 binds mRNA, thus controlling cell-cycle progression. Ultimately, we proved that suppression of IMP1 blocked in vivo growth of Panc-1 transferred into immunodeficient mice. Our results indicate that IMP1 drives the PDCA cell cycle and represents a novel strategy for overcoming PDCA cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605367 | PMC |
http://dx.doi.org/10.3390/cancers15204983 | DOI Listing |
Sci Rep
January 2025
Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
Patient-derived xenografts (PDXs) provide biologically relevant models and potential platforms for the development of treatment strategies for precision medicine in pancreatic cancer. Furthermore, circulating epithelial tumor cells (CETCs/CTCs) are released into the bloodstream by solid tumors and a rare subpopulation-circulating cancer stem cells (cCSCs) - is considered to be responsible for recurrence and plays a key role in metastasis. For the identification of cCSCs, an innovative in vitro assay to generate tumorspheres was established in this study.
View Article and Find Full Text PDFClin Transl Med
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.
Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.
Cancer Lett
January 2025
Amity School of Biological Sciences, Amity University Mohali, Punjab, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor overall survival rate. Cellular stress response pathways promoting cancer cell fitness in harsh tumor microenvironment (TME) play a critical role in cancer growth and survival. The influence of oncogenic Kras, multi-functional heterogeneous cancer-associated fibroblasts (CAFs), and immunosuppressive TME on cancer cells makes the disease more complex and difficult to treat.
View Article and Find Full Text PDFNeoplasia
January 2025
Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany. Electronic address:
Neural invasion is a prognostic hallmark of pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms behind the disruption of perineural barriers and access of cancer cells into intrapancreatic nerves remain poorly understood. This study aimed to investigate the role of epithelial-mesenchymal transformation (EMT) in perineural epithelial cells during neural invasion.Histopathological analysis of human and murine primary tumors using perineurium-specific GLUT1 antibody revealed a reduction in perineural integrity, which positively correlated with the extent of neural invasion in human PDAC cases.
View Article and Find Full Text PDFCancer Res
January 2025
University of Cambridge, Cambridge, United Kingdom.
Pancreatic ductal adenocarcinoma (PDAC) contains an extensive stroma that modulates response to therapy, contributing to the dismal prognosis associated with this cancer. Evidence suggests that PDAC stromal composition is shaped by mutations within malignant cells, but most previous work has focused on pre-clinical models driven by KrasG12D and mutant Trp53. Elucidation of the contribution of additional known oncogenic drivers, including KrasG12V mutation and Smad4 loss, is needed to increase understanding of malignant cell-stroma crosstalk in PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!