Online adaptive radiotherapy (ART) allows adaptation of the dose distribution to the anatomy captured by with pre-adaptation imaging. ART is time-consuming, and thus intra-fractional deformations can occur. This prospective registry study analyzed the effects of intra-fraction deformations of clinical target volume (CTV) on the equivalent uniform dose (EUD) of focal bladder cancer radiotherapy. Using margins of 5-10 mm around CTV on pre-adaptation imaging, intra-fraction CTV-deformations found in a second imaging study reduced the 10th percentile of EUD values per fraction from 101.1% to 63.2% of the prescribed dose. Dose accumulation across fractions of a series was determined with deformable-image registration and worst-case dose accumulation that maximizes the correlation of cold spots. A strong fractionation effect was demonstrated-the EUD was above 95% and 92.5% as determined by the two abovementioned accumulation methods, respectively, for all series of dose fractions. A comparison of both methods showed that the fractionation effect caused the EUD of a series to be insensitive to EUD-declines per dose fraction, and this could be explained by the small size and spatial variations of cold spots. Therefore, ART for each dose fraction is unnecessary, and selective ART for fractions with large inter-fractional deformations alone is sufficient for maintaining a high EUD for a radiotherapy series.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605897 | PMC |
http://dx.doi.org/10.3390/cancers15204933 | DOI Listing |
Anal Chim Acta
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFInt J Cosmet Sci
January 2025
Makeup Products Research, Kao Corporation, Odawara, Japan.
Objective: Currently, nasolabial folds are mainly removed by invasive procedures, resulting in long-lasting changes, as non-surgical user-implementable alternatives are scarce and inefficient. For example, the use of coating films for this purpose has thus far faced substantial difficulties because such films should combine the antithetical properties of shrinkability and flexibility. Herein, we challenge this status quo by identifying a polymer that simultaneously exhibits shrinkability and flexibility and using this polymer to develop a cosmetic formulation for immediate and non-invasive nasolabial fold removal.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.
Purpose: Deep learning is a promising approach to increase reproducibility and time-efficiency of GTV delineation in head and neck cancer, but model evaluation primarily relies on manual GTV delineations as reference annotation, which are subjective and tend to overestimate tumor volume. This study aimed to validate a deep learning model for laryngeal and hypopharyngeal GTV segmentation with pathology and to compare its performance with clinicians' manual delineations.
Materials And Methods: A retrospective dataset of 193 laryngeal and hypopharyngeal cancer patients was used to train a deep learning model with clinical GTV delineations as reference.
Radiother Oncol
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Background And Purpose: Daily online adaptive radiotherapy (DART) increases treatment accuracy by crafting daily customized plans that adjust to the patient's daily setup and anatomy. The routine application of DART is limited by its resource-intensive processes. This study proposes a novel DART strategy for head and neck squamous cell carcinoma (HNSCC), automizing the process by propagating physician-edited treatment contours for each fraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!