A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Transcriptome Analysis of Shiga Toxin-Producing O157:H7 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells during Initial Adherence. | LitMetric

Comparative Transcriptome Analysis of Shiga Toxin-Producing O157:H7 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells during Initial Adherence.

Microorganisms

Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.

Published: October 2023

Shiga toxin-producing (STEC) are notorious foodborne pathogens, capable of causing severe diarrhea and life-threatening complications in humans. Cattle, acting as both primary reservoirs and asymptomatic carriers of STEC, predominantly harbor the pathogen in their rectoanal junction (RAJ), facilitating its transmission to humans through contaminated food sources. Despite the central role of cattle in STEC transmission, the molecular mechanisms governing STEC's adaptation in the RAJ of the asymptomatic reservoir host and its subsequent infection of human colonic epithelial cells, resulting in diarrhea, remain largely unexplored. This study aims to uncover these complicated dynamics by focusing on the STEC O157:H7 serotype within two distinct host environments, bovine RAJ cells and human colonic epithelial cells, during initial colonization. We employed comparative transcriptomics analysis to investigate differential gene expression profiles of STEC O157:H7 during interactions with these cell types. STEC O157:H7 was cultured either with bovine RAJ cells or the human colonic epithelial cell line CCD CoN 841 to simulate STEC-epithelial cell interactions within these two host species. High-throughput RNA sequencing revealed 829 and 1939 bacterial genes expressed in RAJ and CCD CoN 841, respectively. After gene filtering, 221 O157:H7 genes were upregulated during initial adherence to CCD CoN cells and 436 with RAJ cells. Furthermore, 22 genes were uniquely expressed with human cells and 155 genes with bovine cells. Our findings revealed distinct expression patterns of STEC O157:H7 genes involved in virulence, including adherence, metal iron homeostasis, and stress response during its initial adherence (i.e., six hours post-infection) to bovine RAJ cells, as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlighted the potential role of some genes in host adaptation and tissue-specific pathogenicity. These findings shed new light on the potential mechanisms of STEC O157:H7 contributing to colonize the intestinal epithelium during the first six hours of infection, leading to survival and persistence in the bovine reservoir and causing disease in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609592PMC
http://dx.doi.org/10.3390/microorganisms11102562DOI Listing

Publication Analysis

Top Keywords

human colonic
20
colonic epithelial
20
stec o157h7
20
epithelial cells
16
raj cells
16
cells
12
cells human
12
initial adherence
12
bovine raj
12
ccd con
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!