The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. was an active hydrogenotrophic methanogen in all three digesters, whereas was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class ; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608942PMC
http://dx.doi.org/10.3390/microorganisms11102412DOI Listing

Publication Analysis

Top Keywords

full-scale biogas
8
biogas plant
8
anaerobic digestion
8
process stability
8
biogas process
8
three digesters
8
process
5
digesters
5
uncovering microbiome
4
microbiome adaptations
4

Similar Publications

Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis.

View Article and Find Full Text PDF

Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants.

View Article and Find Full Text PDF

Changes in bacterial diversity of full-scale anaerobic digesters treating secondary sludge.

Bioresour Technol

November 2024

Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea. Electronic address:

Anaerobic digestion (AD) of secondary sludge (2S) presents challenges because of its high microbial content and complex cell wall structures. The purpose of this study was to investigate the effects of spatiotemporally-variable factors such as water temperature and dietary habits on the 2S bacterial community and its migration into digesters. Bacterial communities and functions were analyzed using high-throughput pyrosequencing.

View Article and Find Full Text PDF

Microbial diversity and biosafety judgment of digestates derived from different biogas plants for agricultural applications.

J Environ Manage

December 2024

Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland. Electronic address:

The composition of microbial communities is the key to effective anaerobic digestion (AD). The microbiome driving the AD process has been extensively researched, whereas the influence of specific substrates on the microbiome of digestate remains insufficiently investigated. Digestate has considerable potential for use in soil fertilization and bioremediation, therefore its biological safety should be monitored.

View Article and Find Full Text PDF

Phosphorus (P) is critical for plant growth, but global reserves are exhausting within 250-300 years, therefore enhancing phosphate recycling is crucial for the future. Biogas digestate, rich with nutrients is a promising resource for nutrient recovery. Conventional solid-liquid separation shifts approximately 35 % of the total P in the digestate to the solid phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!