Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases.

Animals (Basel)

Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Published: October 2023

Acari (mites and ticks) are a biodiverse group of microarthropods within the Arachnida. Because of their diminutive size, mites are often overlooked. We hypothesized that mites, like other closely related microorganisms, could also contaminate public genomic database. Here, using a strategy based on DNA barcodes previously reported, we scanned contaminations related to mites (Acari, exclusive of Ixodida) in Genbank WGS/TSA database. In 22,114 assemblies (17,845 animal and 4269 plant projects), 1717 contigs in 681 assemblies (3.1%) were detected as mite contaminations. Additional taxonomic analysis showed the following: (1) most of the contaminants (1445/1717) were from the specimens of Magnoliopsida, Insecta and Pinopsida; (2) the contamination rates were higher in plant or TSA projects; (3) mite distribution among different classes of hosts varied considerably. Additional phylogenetic analysis of these contaminated contigs further revealed complicated mite-host associations. Overall, we conducted a first systemic survey and analysis of mite contaminations in public genomic database, and these DNA barcode related mite contigs will provide a valuable resource of information for understanding the diversity and phylogeny of mites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603697PMC
http://dx.doi.org/10.3390/ani13203172DOI Listing

Publication Analysis

Top Keywords

public genomic
12
mites acari
8
genomic database
8
mite contaminations
8
mites
6
diversity distribution
4
distribution mites
4
acari revealed
4
revealed contamination
4
contamination survey
4

Similar Publications

Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.

View Article and Find Full Text PDF

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.

View Article and Find Full Text PDF

Proteomic patterns associated with ketamine response in major depressive disorders.

Cell Biol Toxicol

January 2025

Research Institute, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, China.

Background: Major depressive disorder (MDD) is characterized by persistent feelings of sadness and loss of interest. Ketamine has been widely used to treat MDD owing to its rapid effect in relieving depressive symptoms. Importantly, not all patients respond to ketamine treatment.

View Article and Find Full Text PDF

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!