Ultra-high temperature sterilized milk (UHT) is a popular dairy product known for its long shelf life and convenience. However, protein gel aging and fat quality defects like creaming and flavor deterioration may arise during storage. These problems are primarily caused by thermostable enzymes produced by psychrotrophic bacteria. In this study, four representative psychrotrophic bacteria strains which can produce thermostable enzymes were selected to contaminate UHT milk artificially. After 11, 11, 13, and 17 weeks of storage, the milk samples, which were contaminated with , , and , respectively, demonstrated notable whey separation. The investigation included analyzing the protein and fat content in the upper and bottom layers of the milk, as well as examining the particle size, Zeta potential, and pH in four sample groups, indicating that the stability of UHT milk decreases over time. Moreover, the spoiled milk samples exhibited a bitter taste, with the dominant odor being attributed to ketones and acids. The metabolomics analysis revealed that three key metabolic pathways, namely ABC transporters, butanoate metabolism, and alanine, aspartate, and glutamate metabolism, were found to be involved in the production of thermostable enzymes by psychrotrophic bacteria. These enzymes greatly impact the taste and nutrient content of UHT milk. This finding provides a theoretical basis for further investigation into the mechanism of spoilage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606520 | PMC |
http://dx.doi.org/10.3390/foods12203752 | DOI Listing |
Protein Expr Purif
January 2025
Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom. Electronic address:
Since their discovery in Mycobacterium tuberculosis (Mtb), F-dependent enzymes have been identified as both important drug targets and potential industrial biocatalysts, including for bioremediation of otherwise recalcitrant substrates. Mtb-FGD1, utilizes glucose 6-phosphate (G6P) as an electron donor for the reduction of F. Current expression systems for Mtb-FGD1 use Mycobacterium smegmatis as host, because of the tendency for it to form inclusion bodies in E.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, FEFU, 10 Ajax Bay, 690922 Vladivostok, Russia.
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
The esterase EstSIT01 from can catalyze the asymmetric hydrolysis of -dimethyl ester to produce the crucial chiral intermediate (4, 5)-hemimethyl ester for -biotin synthesis. Despite its high yields and stereoselectivity, the low thermostability of EstSIT01 limits its practical application. Herein, two kinds of rational strategies were combined to enhance the thermostability of EstSIT01.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland.
Tt72 DNA polymerase is a newly characterized PolA-type thermostable enzyme derived from the phage vB_Tt72. The enzyme demonstrates strong 3'→5' exonucleolytic proofreading activity, even in the presence of 1 mM dNTPs. In this study, we examined how the exonucleolytic activity of Tt72 DNA polymerase affects the fidelity of DNA synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!