This article presents the results of an experimental investigation into the effect of process parameters in the precision hard turning of Ti-6Al-4V on chip morphology at both macro and micro levels. It also reports on the control of chip generation to improve chip evacuation and breakability at the macro level by varying the process parameters, namely, feed rate, cutting speed and depth of cut during turning tests. A scanning electron microscope (SEM) was used to examine the chips produced for a better understanding of chip curling mechanisms at the micro level. Surface roughness of the machined specimens was measured to assess the effect of chip evacuation on obtainable surface quality. From the results, it was found that the interaction of process parameters has a significant effect on the control of chip formation. In particular, the interaction of higher cutting speeds and greater depths of cut produced chip entanglement with the workpiece for all values of feed rates. Using relatively higher feed rates with a low depth of cut showed good results for chip breaking when machining at higher cutting speeds. Different chip curling mechanisms were identified from the SEM results. Chip side-curl formation showed different segmentation patterns with an approximately uniform chip thickness along the chip width, while chip up-curl occurred due to variations in chip thickness. Finally, it was found that the tangling of the chip with the workpiece has a significant effect on the final surface quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609175 | PMC |
http://dx.doi.org/10.3390/mi14101973 | DOI Listing |
Lab Chip
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China.
We propose a novel contactless droplet manipulation strategy that combines electrostatic tweezers (ESTs) with lubricated slippery surfaces. Electrostatic induction causes the droplet to experience an electrostatic force, allowing it to move with the horizontal shift of the EST. Because both the EST and the slippery operating platform prepared by a femtosecond laser exhibit a strong binding effect on droplets, the EST droplet manipulation features significant flexibility, high precision, and can work under various operating conditions.
View Article and Find Full Text PDFLab Chip
January 2025
Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
The retina is a complex and highly metabolic tissue in the back of the eye essential for human vision. Retinal diseases can lead to loss of vision in early and late stages of life, significantly affecting patients' quality of life. Due to its accessibility for surgical interventions and its isolated nature, the retina is an attractive target for novel genetic therapies and stem cell-based regenerative medicine.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain.
Traditional cell culture methods face significant limitations in monitoring cell secretions with spatial and temporal precision. Advanced microsystems incorporating biosensors have been developed to address these challenges, but they tend to lack versatility, and their complexity, along with the requirement for specialized equipment, limits their broader adoption. CellStudio offers an innovative, user-friendly solution that exploits Printing and Vacuum Lithography combined with bead-based assays to create modular and tunable cell patterns surrounded by biosensors.
View Article and Find Full Text PDFACS Synth Biol
January 2025
BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Advancements in molecular diagnostics, such as polymerase chain reaction and next-generation sequencing, have revolutionized disease management and prognosis. Despite these advancements in molecular diagnostics, the field faces challenges due to high operational costs and the need for sophisticated equipment and highly trained personnel besides having several technical limitations. The emergent field of CRISPR/Cas sensing technology is showing promise as a new paradigm in clinical diagnostics, although widespread clinical adoption remains limited.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou, 215000, China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. Electronic address:
Rapid and sensitive protein detection methods are of benefit to clinical diagnosis, pathological mechanism research, and infection prevention. However, routine protein detection technologies, such as enzyme-linked immunosorbent assay and Western blot, suffer from low sensitivity, poor quantification and labourious operation. Herein, we developed a fully automated protein analysis system to conduct fast protein quantification at the single molecular level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!