THz radiation has assumed great importance thanks to the efforts in the development of technological tools used in this versatile band of the electromagnetic spectrum. Here, we propose a reflective biprism device with wavelength-independent long-focusing performances in the THz band by exploiting the high thermo-mechanical deformation of the elastomer polydimethylsiloxane (PDMS). This deformation allows for achieving significant optical path modulations in the THz band and effective focusing. The surface of a PDMS layer is covered with a gold thin film acting as a heater thanks to its absorption of wavelengths below ~500 nm. An invariance property of the Fresnel integral has been exploited to experimentally verify the THz performances of the device with an ordinary visible laser source, finding excellent agreement with the theoretical predictions at 1 and 3 THz. The same property also allowed us to experimentally verify that the reflective biprism focus has a longitudinal extension much greater than that exhibited by a benchmark convex cylindrical mirror with the same optical power. The device is thermo-mechanically stable up to a heating power of 270 mW, although it might be potentially exploited at higher powers with minor degradation of the optical performances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609471 | PMC |
http://dx.doi.org/10.3390/mi14101939 | DOI Listing |
We investigate terahertz time-domain spectroscopy using a low-noise dual-frequency-comb laser based on a single spatially multiplexed laser cavity. The laser cavity includes a reflective biprism, which enables generation of a pair of modelocked output pulse trains with slightly different repetition rates and highly correlated noise characteristics. These two pulse trains are used to generate the THz waves and detect them by equivalent time sampling.
View Article and Find Full Text PDFMicromachines (Basel)
October 2023
Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, Rio de Janeiro 22451-900, Brazil.
THz radiation has assumed great importance thanks to the efforts in the development of technological tools used in this versatile band of the electromagnetic spectrum. Here, we propose a reflective biprism device with wavelength-independent long-focusing performances in the THz band by exploiting the high thermo-mechanical deformation of the elastomer polydimethylsiloxane (PDMS). This deformation allows for achieving significant optical path modulations in the THz band and effective focusing.
View Article and Find Full Text PDFSensors (Basel)
May 2022
Material Science Laboratory, Integrated Microscopy Center, The University of Memphis, Memphis, TN 38152, USA.
Common path DHM systems are the most robust DHM systems as they are based on self-interference and are thus less prone to external fluctuations. A common issue amongst these DHM systems is that the two replicas of the sample's information overlay due to self-interference, making them only suitable for imaging sparse samples. This overlay has restricted the use of common-path DHM systems in material science.
View Article and Find Full Text PDFMicroscopy (Oxf)
February 2021
Nano Accessories Product Group, Hitachi High Technologies Canada, Inc., Etobicoke, ON M9W 6A4, Canada.
Ptychography is a coherent diffractive imaging technique that can determine how an electron wave is transmitted through an object by probing it in many small overlapping regions and processing the diffraction data obtained at each point. The resulting electron transmission model describes both phase and amplitude changes to the electron wave. Ptychography has been adopted in transmission electron microscopy in recent years following advances in high-speed direct electron detectors and computer algorithms which now make the technique suitable for practical applications.
View Article and Find Full Text PDFSensors (Basel)
September 2018
College of physical Science & Technology, Lingnan Normal University, Zhanjiang 524048, China.
Fiber-optic surface plasmon resonance (SPR) sensors possess the advantages of small size, flexible, allowing for a smaller sample volume, easy to be integrated, and high sensitivity. They have been intensively developed in recent decades. However, the polarizing nature of the surface plasmon waves (SPWs) always hinders the acquisition of SPR spectrum with high signal-noise ratio in wavelength modulation unless a polarizer is employed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!