The Effect of Width-Mismatch of Modulated Nanowaveguides on the Thermoelectric Efficiency.

Micromachines (Basel)

Department of Aerospace Science and Technology, School of Science, National and Kapodistrian University of Athens, 34 400 Psachna, Greece.

Published: October 2023

Width-modulated nanowaveguides are promising for thermoelectric efficiency enhancement because electron and phonon transport properties can be geometrically tuned for improved performance. The shape of the modulation profile drastically affects the transport properties. Optimization of the width modulation for simultaneous maximum thermoelectric transport and minimum thermal transport is challenging because of the interconnected electron and phonon transport properties. We addressed this problem by analysing the effect of each characteristic dimension of a single rectangular modulation unit on electron and phonon transport. We identified distinct behaviours for electrons and phonons. We reveal that whereas phonon thermal conductance decreases with increasing width-mismatch, the electron thermoelectric power factor shows a non-monotonic dependence. It is pointed out that optimal width-mismatch that maximizes thermoelectric efficiency is mainly determined by electron transport and should be identified by maximizing the thermoelectric power. Our work points to a new strategy of optimizing geometry-modulated metamaterials for maximum thermoelectric efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609590PMC
http://dx.doi.org/10.3390/mi14101912DOI Listing

Publication Analysis

Top Keywords

thermoelectric efficiency
16
electron phonon
12
phonon transport
12
transport properties
12
maximum thermoelectric
8
transport identified
8
thermoelectric power
8
thermoelectric
7
transport
7
electron
5

Similar Publications

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Realizing high power factor and thermoelectric performance in band engineered AgSbTe.

Nat Commun

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

AgSbTe is a promising p-type thermoelectric material operating in the mid-temperature regime. To further enhance its thermoelectric performance, previous research has mainly focused on reducing lattice thermal conductivity by forming ordered nanoscale domains for instance. However, the relatively low power factor is the main limitation affecting the power density of AgSbTe-based thermoelectric devices.

View Article and Find Full Text PDF

Metal chalcogenides have been extensively studied for thermoelectric applications. Among other metal chalcogenides, silver selenide (AgSe) is considered one of the most promising n-type semiconducting materials for thermoelectric applications due to its low band gap value, Seebeck coefficient, and superior power factor (PF) rendered at room temperature. However, one of the main drawbacks of using AgSe as a thermoelectric material on a large scale is the time-consuming physical methods to obtain them, and the need for high vacuum synthesis conditions as well as high-cost.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!