A High-Performance and Cost-Effective Field Programmable Gate Array-Based Motor Drive Emulator.

Micromachines (Basel)

División de Posgrado e Investigación, Instituto Tecnológico de Apizaco, Av Instituto Tecnológico s/n, Apizaco 90300, Mexico.

Published: September 2023

This work presents a hardware-based digital emulator capable of digitally driving a permanent magnet synchronous machine electronic setup. The aim of this work is to present a high-performance, cost-effective, and portable complementary solution when new paradigms of electronic drive design are generated, such as machine early failure detection, fault-tolerant drive, and high-performance control strategy implementations. In order to achieve the high performance required by the digital emulator, the electronic drive models (permanent-magnet synchronous machine, voltage-source inverter, motor-control strategy) are digitally described in Verilog hardware description language and implemented on a field programmable gate array (FPGA) digital platform using two approaches: parallel and sequential methods. The results obtained show the effectiveness of the digital emulator design, and the resources used by the solution presented can be implemented on a low-cost digital platform that reveals a cost-effective operation of the solution presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608923PMC
http://dx.doi.org/10.3390/mi14101864DOI Listing

Publication Analysis

Top Keywords

digital emulator
12
high-performance cost-effective
8
field programmable
8
programmable gate
8
synchronous machine
8
electronic drive
8
digital platform
8
solution presented
8
digital
5
cost-effective field
4

Similar Publications

This paper breaks away from traditional approaches that merely emulate digital neural networks. Using Mach-Zehnder interferometer (MZI) networks as a case study, we explore the impact of the inherent properties of analog computation on performance and identify the characteristics that optical neural networks (ONNs) components should possess to better adapt to these specific properties. Specifically, we examine the influence of analog computation on bias power and activation functions, as well as the impact of optical pruning on ONN's performance.

View Article and Find Full Text PDF

The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members.

View Article and Find Full Text PDF

The regular workshops held by the Center for Alternatives to Animal Testing (CAAT) on biology-inspired microphysiological systems (MPS) taking place every four years, have become a reliable measure to assess fundamental scientific, industrial and regulatory trends for translational science in the MPS-field from a bird's eye view. The 2023 workshop participants at that time concluded that the technology as used within academia has matured significantly, underlined by the broad use of MPS and the steadily increasing number of high quality research publications - yet, broad industry adoption of MPS has been slow, despite strong interest. Academic research using MPS primarily aims to accurately recapitulate human biology in MPS-based organ models in areas where traditional models have been lacking key elements of human physiology, thereby enabling breakthrough discoveries for life sciences.

View Article and Find Full Text PDF

A compilation of factors over the past decade-including the availability of increasingly large and rich healthcare datasets, advanced technologies to extract unstructured information from health records and digital sources, advancement of principled study design and analytic methods to emulate clinical trials, and frameworks to support transparent study conduct-has ushered in a new era of real-world evidence (RWE). This review article describes the evolution of the RWE era, including pharmacoepidemiologic methods designed to support causal inferences regarding treatment effects, the role of regulators and other health authorities in establishing distributed real-world data networks enabling analytics at scale, and the many global guidance documents on principled methods of producing RWE. This article also highlights the growing opportunity for RWE to support decision making by regulators, health technology assessment groups, clinicians, patients, and other stakeholders and provides examples of influential RWE studies.

View Article and Find Full Text PDF

. Radiation dose and diagnostic image quality are opposing constraints in x-ray computed tomography (CT). Conventional methods do not fully account for organ-level radiation dose and noise when considering radiation risk and clinical task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!