Osteoarthritis (OA) is the most common joint disease that causes local inflammation and pain, significantly reducing the quality of life and normal social activities of patients. Currently, there are no disease-modifying OA drugs (DMOADs) available, and treatment relies on pain relief agents or arthroplasty. To address this significant unmet medical need, we aimed to develop monoclonal antibodies that can block the osteoclast-associated receptor (OSCAR). Our recent study has revealed the importance of OSCAR in OA pathogenesis as a novel catabolic regulator that induces chondrocyte apoptosis and accelerates articular cartilage destruction. It was also shown that blocking OSCAR with a soluble OSCAR decoy receptor ameliorated OA in animal models. In this study, OSCAR-neutralizing monoclonal antibodies were isolated and optimized by phage display. These antibodies bind to and directly neutralize OSCAR, unlike the decoy receptor, which binds to the ubiquitously expressed collagen and may result in reduced efficacy or deleterious off-target effects. The DMOAD potential of the anti-OSCAR antibodies was assessed with in vitro cell-based assays and an in vivo OA model. The results demonstrated that the anti-OSCAR antibodies significantly reduced cartilage destruction and other OA signs, such as subchondral bone plate sclerosis and loss of hyaline cartilage. Hence, blocking OSCAR with a monoclonal antibody could be a promising treatment strategy for OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604876 | PMC |
http://dx.doi.org/10.3390/biomedicines11102844 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!