Edge effect denotes better growth of microbial organisms situated at the edge of the solid agar media. Although the precise reason underlying edge effect is unresolved, it is generally attributed to greater nutrient availability with less competing neighbors at the edge. Nonetheless, edge effect constitutes an unavoidable confounding factor that results in misinterpretation of cell fitness, especially in high-throughput screening experiments widely employed for genome-wide investigation using microbial gene knockout or mutant libraries. Here, we visualize edge effect in high-throughput high-density pinning arrays and report a normalization approach based on colony growth rate to quantify drug (hydroxyurea)-hypersensitivity in fission yeast strains. This normalization procedure improved the accuracy of fitness measurement by compensating cell growth rate discrepancy at different locations on the plate and reducing false-positive and -negative frequencies. Our work thus provides a simple and coding-free solution for a struggling problem in robotics-based high-throughput screening experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604075PMC
http://dx.doi.org/10.3390/biomedicines11102829DOI Listing

Publication Analysis

Top Keywords

edge high-throughput
8
fission yeast
8
high-throughput screening
8
screening experiments
8
growth rate
8
edge
7
normalization protocol
4
protocol reduces
4
reduces edge
4
high-throughput
4

Similar Publications

Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects.

Plants (Basel)

January 2025

The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.

Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness.

View Article and Find Full Text PDF

Cutting-edge tools for unveiling the dynamics of plasmid-host interactions.

Trends Microbiol

January 2025

Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, UK. Electronic address:

The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution.

View Article and Find Full Text PDF

Genome assemblies and other genomic tools for understanding insect adaptation.

Curr Opin Insect Sci

January 2025

Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil. Electronic address:

Insects, the most diverse group of animals, exhibit remarkable adaptability, playing both crucial and problematic roles in ecosystems. Recent advancements in genomic technologies, such as high-throughput sequencing, have provided unprecedented insights into the genetic foundations of insect adaptation. This review explores key methodologies, including de novo and reference-guided genome assemblies, and highlights cutting-edge technologies like second and third-generation sequencing, and hybrid techniques.

View Article and Find Full Text PDF

Current approaches in CRISPR-Cas system for metabolic disorder.

Prog Mol Biol Transl Sci

January 2025

School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India. Electronic address:

A new era in genomic medicine has been brought by the development of CRISPR-Cas technology, which presents hitherto unheard-of possibilities for the treatment of metabolic illnesses. The treatment approaches used in CRISPR/Cas9-mediated gene therapy, emphasize distribution techniques such as viral vectors and their use in preclinical models of metabolic diseases like hypercholesterolemia, glycogen storage diseases, and phenylketonuria. The relevance of high-throughput CRISPR screens for target identification in discovering new genes and pathways associated with metabolic dysfunctions is an important aspect of the discovery of new approaches.

View Article and Find Full Text PDF

PADS-Net: GAN-based radiomics using multi-task network of denoising and segmentation for ultrasonic diagnosis of Parkinson disease.

Comput Med Imaging Graph

January 2025

The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China; Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai, China. Electronic address:

Parkinson disease (PD) is a prevalent neurodegenerative disorder, and its accurate diagnosis is crucial for timely intervention. We propose the PArkinson disease Denoising and Segmentation Network (PADS-Net), to simultaneously denoise and segment transcranial ultrasound images of midbrain for accurate PD diagnosis. The PADS-Net is built upon generative adversarial networks and incorporates a multi-task deep learning framework aimed at optimizing the tasks of denoising and segmentation for ultrasound images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!