A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mu-Net a Light Architecture for Small Dataset Segmentation of Brain Organoid Bright-Field Images. | LitMetric

To characterize the growth of brain organoids (BOs), cultures that replicate some early physiological or pathological developments of the human brain are usually manually extracted. Due to their novelty, only small datasets of these images are available, but segmenting the organoid shape automatically with deep learning (DL) tools requires a larger number of images. Light U-Net segmentation architectures, which reduce the training time while increasing the sensitivity under small input datasets, have recently emerged. We further reduce the U-Net architecture and compare the proposed architecture (MU-Net) with U-Net and UNet-Mini on bright-field images of BOs using several data augmentation strategies. In each case, we perform leave-one-out cross-validation on 40 original and 40 synthesized images with an optimized adversarial autoencoder (AAE) or on 40 transformed images. The best results are achieved with U-Net segmentation trained on optimized augmentation. However, our novel method, MU-Net, is more robust: it achieves nearly as accurate segmentation results regardless of the dataset used for training (various AAEs or a transformation augmentation). In this study, we confirm that small datasets of BOs can be segmented with a light U-Net method almost as accurately as with the original method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603975PMC
http://dx.doi.org/10.3390/biomedicines11102687DOI Listing

Publication Analysis

Top Keywords

bright-field images
8
small datasets
8
light u-net
8
u-net segmentation
8
images
6
u-net
5
mu-net light
4
light architecture
4
small
4
architecture small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!