Ochronotic Chondropathy: A Case Report.

Biomedicines

Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.

Published: September 2023

AI Article Synopsis

  • Endogenous ochronosis, or alkaptonuria, causes notable discoloration of skin, eyes, and urine, often leading to joint degradation requiring surgeries.
  • While some aspects of the disease have been studied, uncertainties remain about how this pigmentation occurs and why some tissues resist damage.
  • This report details a case study of an 83-year-old woman with alkaptonuria, discussing the latest findings on the disease's cellular and mechanical effects on cartilage, and how its study may inform broader skeletal biology and treatments for related conditions like osteoarthritis.

Article Abstract

Endogenous ochronosis, also known as alkaptonuria, is a rare disease known for its bluish-black discoloration of the skin, sclerae, and pinnae, as well as urine that turns black upon standing. Though rarely fatal, joint degradation is a common sequela, and many patients require multiple large joint arthroplasties throughout their lifetime. Though many aspects of the pathophysiological mechanisms of the disease have been described, questions remain, such as how the initiation of ochronotic pigmentation is prompted and the specific circumstances that make some tissues more resistant to pigmentation-related damage than others. In this report, we present the case of an 83-year-old female previously diagnosed with alkaptonuria including high-quality arthroscopic images displaying the fraying of articular cartilage. We also offer a summary of the latest literature on the pathophysiological mechanisms of the disease, including cellular-level changes observed in ochronotic chondrocytes, biochemical and mechanical alterations to the cartilaginous extracellular matrix, and patterns of pigmentation and joint degradation observed in humans and mice models. With these, we present an overview of the mechanisms of ochronotic chondropathy and joint degradation as the processes are currently understood. While alkaptonuria itself is rare, it has been termed a "fundamental disease," implying that its study and greater understanding have the potential to lead to insights in skeletal biology in general, as well as more common pathologies such as osteoarthritis and their potential treatment mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604465PMC
http://dx.doi.org/10.3390/biomedicines11102625DOI Listing

Publication Analysis

Top Keywords

joint degradation
12
ochronotic chondropathy
8
alkaptonuria rare
8
pathophysiological mechanisms
8
mechanisms disease
8
ochronotic
4
chondropathy case
4
case report
4
report endogenous
4
endogenous ochronosis
4

Similar Publications

Manganese Galvanic Cells Intervene in Tumor Metabolism to Reinforce cGAS-STING Activation for Bidirectional Synergistic Hydrogen-Immunotherapy.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.

The cGAS-STING pathway is pivotal in initiating antitumor immunity. However, tumor metabolism, particularly glycolysis, negatively regulates the activation of the cGAS-STING pathway. Herein, Mn galvanic cells (MnG) are prepared via liquid-phase exfoliation and in situ galvanic replacement to modulate tumor metabolism, thereby enhancing cGAS-STING activation for bidirectional synergistic H-immunotherapy.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Article Synopsis
  • Sepsis is a severe condition caused by an uncontrolled immune reaction to infections, often involving harmful bacteria like E. coli, and currently lacks effective treatments.
  • Researchers developed E. coli wall-derived carbon dots (E-CDs) that can reduce inflammation and improve survival rates in septic mice by binding to immune receptors and preventing excessive immune responses.
  • E-CDs also show promise in other models, reducing inflammation and oxidative stress, suggesting they could be a new therapeutic approach for treating sepsis by utilizing pathogen-derived materials.
View Article and Find Full Text PDF

Purpose: To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS).

Methods: In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls).

View Article and Find Full Text PDF

MPicker: visualizing and picking membrane proteins for cryo-electron tomography.

Nat Commun

January 2025

Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.

Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ.

View Article and Find Full Text PDF

Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!