Inflammation impacts human hematopoiesis across physiologic and pathologic conditions, as signals derived from the bone marrow microenvironment, such as pro-inflammatory cytokines and chemokines, have been shown to alter hematopoietic stem cell (HSCs) homeostasis. Dysregulated inflammation can skew HSC fate-related decisions, leading to aberrant hematopoiesis and potentially contributing to the pathogenesis of hematological disorders such as myelodysplastic syndromes (MDS). Recently, emerging studies have used single-cell sequencing and muti-omic approaches to investigate HSC cellular heterogeneity and gene expression in normal hematopoiesis as well as in myeloid malignancies. This review summarizes recent reports mechanistically dissecting the role of inflammatory signaling and innate immune response activation due to MDS progression. Furthermore, we highlight the growing importance of using multi-omic techniques, such as single-cell profiling and deconvolution methods, to unravel MDSs' heterogeneity. These approaches have provided valuable insights into the patterns of clonal evolution that drive MDS progression and have elucidated the impact of inflammation on the composition of the bone marrow immune microenvironment in MDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603842PMC
http://dx.doi.org/10.3390/biomedicines11102613DOI Listing

Publication Analysis

Top Keywords

myelodysplastic syndromes
8
bone marrow
8
mds progression
8
emerging insights
4
insights molecular
4
molecular mechanisms
4
inflammation
4
mechanisms inflammation
4
inflammation myelodysplastic
4
syndromes inflammation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!