AI Article Synopsis

Article Abstract

Effective oral care is a critical requirement to maintain a high quality of life. Most oral diseases are caused by plaque (oral biofilm), which is also correlated with systemic diseases. A common method to remove biofilm is brushing teeth with toothpaste. However, 3.5 billion people in the world have oral diseases, meaning that more efficient methods of removing biofilms are needed. We have developed a toothbrush that applies a bioelectric effect (BE) utilizing an electric force for biofilm removal. It demonstrated significantly higher biofilm removal efficiency than non-BE manual toothbrushes. Tests were performed in saline and toothpaste conditions using various pressures. Results showed that the BE toothbrush had a significantly higher biofilm removal efficiency in saline (0.5 N: 215.43 ± 89.92%, 2.5 N: 116.77 ± 47.02%) and in a toothpaste slurry (0.5 N: 104.96 ± 98.93%, 2.5 N: 96.23 ± 35.16%) than non-BE manual toothbrushes. Results also showed that BE toothbrushes were less dependent on toothpaste. This study suggests that the application of BE can be a new solution to plaque problems in oral care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604395PMC
http://dx.doi.org/10.3390/bioengineering10101184DOI Listing

Publication Analysis

Top Keywords

biofilm removal
16
oral care
8
oral diseases
8
higher biofilm
8
removal efficiency
8
non-be manual
8
manual toothbrushes
8
oral
5
biofilm
5
study biofilm
4

Similar Publications

Enhanced bacteriostatic effects of phage vB_C4 and cell wall-targeting antibiotic combinations against drug-resistant .

Microbiol Spectr

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review.

Biotechnol Adv

January 2025

Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail.

View Article and Find Full Text PDF

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!