Human skeleton data obtained using a depth camera have been used for pathological gait recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based pathological gait recognition have used either raw skeleton sequences directly or gait features, such as gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using skeleton, joint angles, and gait parameters together can improve recognition performance. This study aims to develop a deep neural network model that effectively combines different types of input data. We propose a hybrid deep neural network framework composed of a graph convolutional network, recurrent neural network, and artificial neural network to effectively encode skeleton sequences, joint angle sequences, and gait parameters, respectively. The features extracted from three different input data types are fused and fed into the final classification layer. We evaluate the proposed model on two different skeleton datasets (a simulated pathological gait dataset and a vestibular disorder gait dataset) that were collected using an Azure Kinect. The proposed model, with multiple types of input, improved the pathological gait recognition performance compared to single input models on both datasets. Furthermore, it achieved the best performance among the state-of-the-art models for skeleton-based action recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604846PMC
http://dx.doi.org/10.3390/bioengineering10101133DOI Listing

Publication Analysis

Top Keywords

neural network
20
pathological gait
20
gait recognition
16
deep neural
12
skeleton sequences
12
gait parameters
12
gait
11
hybrid deep
8
network framework
8
gait features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!