Blood-brain barrier (BBB) models are important tools for studying CNS drug delivery, brain development, and brain disease. In vitro BBB models have been obtained from animals and immortalized cell lines; however, brain microvascular endothelial cells (BMECs) derived from them have several limitations. Furthermore, obtaining mature brain microvascular endothelial-like cells (BME-like cells) from human pluripotent stem cells (hPSCs) with desirable properties for establishing BBB models has been challenging. Here, we developed an efficient method for differentiating hPSCs into BMECs that are amenable to the development and application of human BBB models. The established conditions provided an environment similar to that occurring during BBB differentiation in the presence of the co-differentiating neural cell population by the modulation of TGF-β and SHH signaling. The developed BME-like cells showed well-organized tight junctions, appropriate expression of nutrient transporters, and polarized efflux transporter activity. In addition, BME-like cells responded to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance. Moreover, the BME-like cells exhibited an immune quiescent property of BBB endothelial cells by decreasing the expression of adhesion molecules. Therefore, our novel cellular platform could be useful for drug screening and the development of brain-permeable pharmaceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604460PMC
http://dx.doi.org/10.3390/bioengineering10101132DOI Listing

Publication Analysis

Top Keywords

bbb models
16
bme-like cells
16
brain microvascular
12
endothelial cells
12
cells
9
tgf-β shh
8
pluripotent stem
8
microvascular endothelial
8
blood-brain barrier
8
bbb
6

Similar Publications

Objective: This study aims to develop a dual-ligand-modified targeted drug delivery system by integrating photosensitizers and chemotherapeutic drugs to enhance anti-glioma effects. The system is designed to overcome the blood-brain barrier (BBB) that hinders effective drug delivery, increase drug accumulation in glioma cells, and thereby enhance therapeutic efficacy.

Methods: Liposomes were prepared using the film dispersion-ammonium sulfate gradient technique, co-loading the photosensitizer indocyanine green (ICG) and the chemotherapeutic drug mitoxantrone (MTO).

View Article and Find Full Text PDF

A cystine-dense peptide (CDP) named TfRB1 was identified for its ability to bind to the transferrin receptor (TfR). CDPs are stabilized by their disulfide bonds, and variants of TfRB1 - specifically TfRB1G1, TfRB1G2, and TfRB1G3 - are explored for their potential to transport molecules across the blood-brain barrier (BBB) into the central nervous system (CNS). This study employed molecular modeling and dynamics simulations to characterize the interactions between these TfRB1 variants and TfR.

View Article and Find Full Text PDF

NeuTox 2.0: A hybrid deep learning architecture for screening potential neurotoxicity of chemicals based on multimodal feature fusion.

Environ Int

December 2024

Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.

Chemically induced neurotoxicity is a critical aspect of chemical safety assessment. Traditional and costly experimental methods call for the development of high-throughput virtual screening. However, the small datasets of neurotoxicity have limited the application of advanced deep learning techniques.

View Article and Find Full Text PDF

Transcranial alternating current stimulation inhibits ferroptosis and promotes functional recovery in spinal cord injury via the cGMP-PKG signalling pathway.

Life Sci

December 2024

Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China. Electronic address:

Aims: This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI).

Main Methods: By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model.

View Article and Find Full Text PDF

Immune cell infiltration and modulation of the blood-brain barrier in a guinea pig model of tuberculosis: Observations without evidence of bacterial dissemination to the brain.

PLoS One

December 2024

Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America.

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a chronic inflammatory disease. Although typically associated with inflammation of the lungs and other peripheral tissues, increasing evidence has uncovered neurological consequences attributable to Mtb infection. These include deficits in memory and cognition, increased risk for neurodegenerative disease, and progressive neuropathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!