Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atrial fibrillation (AF) is the most common arrhythmia with a high burden of morbidity including impaired quality of life and increased risk of thromboembolism. Early detection and management of AF could prevent thromboembolic events. Artificial intelligence (AI)--based methods in healthcare are developing quickly and can be proved as valuable for the detection of atrial fibrillation. In this metanalysis, we aim to review the diagnostic accuracy of AI-based methods for the diagnosis of atrial fibrillation. A predetermined search strategy was applied on four databases, the PubMed on 31 August 2022, the Google Scholar and Cochrane Library on 3 September 2022, and the Embase on 15 October 2022. The identified studies were screened by two independent investigators. Studies assessing the diagnostic accuracy of AI-based devices for the detection of AF in adults against a gold standard were selected. Qualitative and quantitative synthesis to calculate the pooled sensitivity and specificity was performed, and the QUADAS-2 tool was used for the risk of bias and applicability assessment. We screened 14,770 studies, from which 31 were eligible and included. All were diagnostic accuracy studies with case-control or cohort design. The main technologies used were: (a) photoplethysmography (PPG) with pooled sensitivity 95.1% and specificity 96.2%, and (b) single-lead ECG with pooled sensitivity 92.3% and specificity 96.2%. In the PPG group, 0% to 43.2% of the tracings could not be classified using the AI algorithm as AF or not, and in the single-lead ECG group, this figure fluctuated between 0% and 38%. Our analysis showed that AI-based methods for the diagnosis of atrial fibrillation have high sensitivity and specificity for the detection of AF. Further studies should examine whether utilization of these methods could improve clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607777 | PMC |
http://dx.doi.org/10.3390/jcm12206576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!