Diabetes mellitus is a widespread chronic metabolic disorder that requires regular blood glucose level surveillance. Current invasive techniques, such as finger-prick tests, often result in discomfort, leading to infrequent monitoring and potential health complications. The primary objective of this study was to design a novel, portable, non-invasive system for diabetes detection using breath samples, named DiabeticSense, an affordable digital health device for early detection, to encourage immediate intervention. The device employed electrochemical sensors to assess volatile organic compounds in breath samples, whose concentrations differed between diabetic and non-diabetic individuals. The system merged vital signs with sensor voltages obtained by processing breath sample data to predict diabetic conditions. Our research used clinical breath samples from 100 patients at a nationally recognized hospital to form the dataset. Data were then processed using a gradient boosting classifier model, and the performance was cross-validated. The proposed system attained a promising accuracy of 86.6%, indicating an improvement of 20.72% over an existing regression technique. The developed device introduces a non-invasive, cost-effective, and user-friendly solution for preliminary diabetes detection. This has the potential to increase patient adherence to regular monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607308PMC
http://dx.doi.org/10.3390/jcm12206439DOI Listing

Publication Analysis

Top Keywords

diabetes detection
12
breath samples
12
system diabetes
8
detection breath
8
breath
5
diabeticsense non-invasive
4
non-invasive multi-sensor
4
multi-sensor iot-based
4
iot-based pre-diagnostic
4
system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!