A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence and Child Abuse and Neglect: A Systematic Review. | LitMetric

Artificial Intelligence and Child Abuse and Neglect: A Systematic Review.

Children (Basel)

Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Sezione di Medicina Legale, Università degli Studi di Torino, 10126 Torino, Italy.

Published: October 2023

All societies should carefully address the child abuse and neglect phenomenon due to its acute and chronic sequelae. Even if artificial intelligence (AI) implementation in this field could be helpful, the state of the art of this implementation is not known. No studies have comprehensively reviewed the types of AI models that have been developed/validated. Furthermore, no indications about the risk of bias in these studies are available. For these reasons, the authors conducted a systematic review of the PubMed database to answer the following questions: "what is the state of the art about the development and/or validation of AI predictive models useful to contrast child abuse and neglect phenomenon?"; "which is the risk of bias of the included articles?". The inclusion criteria were: articles written in English and dated from January 1985 to 31 March 2023; publications that used a medical and/or protective service dataset to develop and/or validate AI prediction models. The reviewers screened 413 articles. Among them, seven papers were included. Their analysis showed that: the types of input data were heterogeneous; artificial neural networks, convolutional neural networks, and natural language processing were used; the datasets had a median size of 2600 cases; the risk of bias was high for all studies. The results of the review pointed out that the implementation of AI in the child abuse and neglect field lagged compared to other medical fields. Furthermore, the evaluation of the risk of bias suggested that future studies should provide an appropriate choice of sample size, validation, and management of overfitting, optimism, and missing data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605696PMC
http://dx.doi.org/10.3390/children10101659DOI Listing

Publication Analysis

Top Keywords

child abuse
16
abuse neglect
16
risk bias
16
artificial intelligence
8
systematic review
8
state art
8
neural networks
8
child
4
intelligence child
4
abuse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!