Characterization of New Alpha Zero (α) Thalassaemia Deletion (--) among Malays in Malaysian Population.

Diagnostics (Basel)

Haematology Unit, Cancer Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia.

Published: October 2023

Malaysia is a multicultural and multiethnic country comprising numerous ethnic groups. From the total population of 32.7 million, Malays form the bulk of the Bumiputera in Malaysia comprise about 69.9%, followed by Chinese 22.8%, Indian 6.6%, and others 0.7%. The heterogeneous population and increasing numbers of non-citizens in this country affects the heterogeneity of genetic diseases, diversity, and heterogeneity of thalassaemia mutations. Alpha (α)-thalassaemia is an inherited haemoglobin disorder characterized by hypochromic microcytic anaemia caused by a quantitative reduction in the α-globin chain. A majority of the α-thalassaemia are caused by deletions in the α-globin gene cluster. Among Malays, the most common deletional alpha thalassaemia is -α deletion followed by -- deletion. We described the molecular characterization of a new -- deletion in our population, involving both alpha genes in . Interestingly, we found that this mutation is unique among Malay ethnicities. It is important to diagnose this deletion because of the 25% risk of Hb Bart's with hydrops fetalis in the offspring when in combination with another α- thalassaemia allele. MLPA is a suitable method to detect unknown and uncommon deletions and to characterize those cases which remain unresolved after a standard diagnostic approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606806PMC
http://dx.doi.org/10.3390/diagnostics13203286DOI Listing

Publication Analysis

Top Keywords

alpha thalassaemia
8
deletion
5
characterization alpha
4
thalassaemia
4
thalassaemia deletion
4
deletion malays
4
malays malaysian
4
population
4
malaysian population
4
population malaysia
4

Similar Publications

Objective: To analyze the correlation between variants in the start codon of the α-globin gene and phenotypes of thalassemia, so as to provide a basis for the diagnosis and prevention of α-thalassemia.

Methods: A retrospective study was conducted on 7 patients diagnosed by Yangjiang People's Hospital and Guangzhou Hybribio Co. Ltd.

View Article and Find Full Text PDF

MYB represses ζ-globin expression through upregulating ETO2.

Acta Biochim Biophys Sin (Shanghai)

January 2025

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .

View Article and Find Full Text PDF

ATRX loss inhibits DDR to strengthen radio-sensitization in p53-deficent HCT116 cells.

Sci Rep

January 2025

NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.

Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.

View Article and Find Full Text PDF

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

Circulating biomarkers associated with pediatric sickle cell disease.

Front Mol Biosci

December 2024

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.

Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!