FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611805 | PMC |
http://dx.doi.org/10.1038/s41419-023-06177-1 | DOI Listing |
Life Sci
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang 261021, China. Electronic address:
The forkhead box O1 (FOXO1), the first discovered member of the FoxO family, is a critical transcription factor predominantly found in insulin-secreting and insulin-sensitive tissues. In the pancreas of adults, FoxO1 expression is restricted to islet β cells. We determined that in human islet microarray datasets, FoxO1 expression is higher than other FoxO transcription factors.
View Article and Find Full Text PDFDev Dyn
January 2025
Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA. Electronic address:
Extracellular matrix stiffness is one of the multiple mechanical signals that alters cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the GEF, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Department of Medical Biology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkiye.
Background/aim: Lung cancer, a predominant contributor to cancer mortality, is characterized by diverse etiological factors, including tobacco smoking and genetic susceptibilities. Despite advancements, particularly in nonsmall-cell lung cancer (NSCLC), therapeutic options for lung squamous cell carcinoma (LUSC) are limited. Transposable elements (TEs) and their regulatory proteins, such as tigger transposable element derived (TIGD) family proteins, have been implicated in cancer development.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China.
Introduction: Osteoarthritis (OA) is a prevalent joint disease that severely impacts patients' quality of life. Due to its unclear pathogenesis and lack of effective therapeutic targets, discovering new biomarkers for OA is essential. Recently, the role of chondrocyte subpopulations in OA progression has gained significant attention, offering potential insights into the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!