Problem Description: Musculoskeletal (MSK) anatomy and pathology from a radiology perspective can be difficult to conceptualize and understand due to the challenge of visualizing 3D structures in stacks of 2D imaging. Consequently, trainees may benefit from inexpensive methods that can help trainees better visualize MSK anatomy and pathology. The purpose of this study is to provide proof of concept for inexpensive methodology to help learners such as radiology residents quickly and inexpensively understand musculoskeletal anatomy and pathology. This can help trainees become better at applying musculoskeletal knowledge to clinical practice.

Institutional Methodology: Soft-modeling compounds such as Play-Doh® was utilized in a variety of colors with pottery tools to recreate 3D models of challenging MSK anatomy and pathology for trainees. Qualitative feedback from the residents was collected.

Results: Eighteen different pathological conditions across six major bone structures were modeled with a soft modeling compound. Residents qualitatively identified the experience as educational in terms of helping them better understand MSK pathology and positive in terms of making learning fun, less stressful, and memorable due to uniqueness of the learning modality. Residents report challenges modeling complex anatomical features and pathology via this methodology.

Conclusion: Radiology residents and other learners can enhance their knowledge of musculoskeletal anatomy and pathology via utilization of inexpensive soft modeling compounds. This may offer a cheaper and more time sensitive alternative to current 3-dimensional hardware and software technologies being developed for educational purposes. Additional work needs to be done to examine the utility of this methodology across larger and diverse groups of learners.

Download full-text PDF

Source
http://dx.doi.org/10.1067/j.cpradiol.2023.10.009DOI Listing

Publication Analysis

Top Keywords

anatomy pathology
24
soft modeling
12
musculoskeletal anatomy
12
msk anatomy
12
modeling compound
8
pathology
8
help trainees
8
trainees better
8
radiology residents
8
anatomy
6

Similar Publications

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

BACKGROUND The thyroglossal duct cyst, which develops from the midline migratory tract between the foramen cecum and the anatomic location of the thyroid, is the most prevalent congenital abnormality of the neck, accounting for about 70% of all cervical neck masses in children and 7% in adults. Only up to 1% of these abnormalities contain malignant thyroid tissue, with 90% of those cases being papillary thyroid carcinoma. Thyroglossal duct cyst is rarely linked to carcinoma.

View Article and Find Full Text PDF

Background And Objective: Scabies is the second most common cause of disability due to skin disease in the Philippines. However, there were no cited studies in Global Burden of Disease 2019 and the disability-adjusted life years (DALY) computations were most likely based on statistical modelling. The Philippine Department of Health has embarked on a program to estimate the disease burden of priority diseases in the country, which include scabies.

View Article and Find Full Text PDF

Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.

View Article and Find Full Text PDF

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!