Solving two environmental problems simultaneously:Microporous carbon derived from mixed plastic waste for CO capture.

Chemosphere

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.

Published: December 2023

Conversion of plastic waste into porous carbon for CO capture is an attractive approach to solve the carbon emission and plastic pollution problems, simultaneously. However, the previous studies are limited to the utilization of single PET plastic. The conversion of mixed plastic waste (MPW), which is of more practical significance, is seldom reported. In this study, mixed plastic waste was converted into porous carbon materials for CO capture through cascading autogenic pressure carbonization (APC) and chemical activation. The carbon yield of 56% was achieved through APC of MPW. The activator (KOH) dosage had significant effects on the structure and properties of the prepared porous carbons. Porous carbon prepared with KOH/C ratio of 4 had the largest micropore area and the maximum CO adsorption was 2.7 mmol g at 298 K and 1 bar. The experimental data were well fitted to the pesudo first-order kinetic model. The MPW derived porous carbon exhibited not only high CO uptake capacity, but also fast adsorption rate, good selectivity of CO over N and good cyclic stability, which could be regarded as a promising adsorbent for CO adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140546DOI Listing

Publication Analysis

Top Keywords

plastic waste
16
porous carbon
16
mixed plastic
12
carbon
7
plastic
6
porous
5
solving environmental
4
environmental problems
4
problems simultaneously:microporous
4
simultaneously:microporous carbon
4

Similar Publications

Development of heat sealable film from tapioca and potato starch for application in edible packaging.

J Food Sci Technol

February 2025

Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.

This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.

View Article and Find Full Text PDF

Formulation optimization and characterization of biodegradable containers incorporated with orange peel powder and tamarind seed powder.

J Food Sci Technol

February 2025

Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.

Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Chemical upcycling of polybutadiene into size controlled α,ω-dienes and diesters sequential hydrogenation and cross-metathesis.

Chem Sci

January 2025

Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium

Plastic waste conversion into valuable chemicals is a promising alternative to landfill or incineration. In particular, the chemical upcycling of polybutadiene rubber (PBR) could provide a renewable route towards highly desirable α,ω-dienes with varying chain lengths, which can find ample industrial application. While previous research has shown that the treatment of polybutadiene with a consecutive hydrogenation and ethenolysis reaction can afford long-chain α,ω-dienes, achieving precise control over the product chain length remains an important bottleneck.

View Article and Find Full Text PDF

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!