A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. | LitMetric

E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro.

J Biol Chem

Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Electronic address:

Published: December 2023

The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25. We demonstrate that Mpro has a short half-life that is prolonged via proteasomal inhibition, with its Lys-100 residue serving as a potential ubiquitin acceptor. Using in vitro binding assays, we observed ZBTB25 and Mpro bind to each other in vitro, and using progressive deletional mapping, we further uncovered the required domains for this interaction. Finally, we used an orthologous beta-coronavirus infection model and observed that genetic ablation of ZBTB25 resulted in a more highly infective virus, an effect lost upon reconstitution of ZBTB25 to deleted cells. In conclusion, these data suggest a new mechanism of Mpro protein regulation as well as identify ZBTB25 as an anticoronaviral E3 ubiquitin ligase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679490PMC
http://dx.doi.org/10.1016/j.jbc.2023.105388DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
12
mpro protein
12
ligase zbtb25
8
mpro
8
zbtb25
6
ubiquitin
4
zbtb25 suppresses
4
suppresses beta
4
beta coronavirus
4
coronavirus infection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!