In this research, a sensitive fluorometric and colorimetric dual-mode sensing platform based on nitrogen-doped carbon quantum dots (NCDs) and magnetic Fe nanoparticles with peroxidase-like activity (Fe nanozymes, Fe NZs) was established, and was further applied for the detection of α-glucosidase (α-glu) and its inhibitors. The ⋅OH that produced by HO catalyzed by Fe NZs can oxidize the colorless diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) to green oxABTS, and a noticeable absorption peak at 417 nm appeared. Simultaneously, oxABTS can quench the fluorescence of NCDs at 402 nm via fluorescence resonance energy transfer (FRET). 2-O-α-D-glucopyranosyl-L-ascorbic acid (AAG) can be decomposed by α-glu to glucose and ascorbic acid (AA), AA can prevent the oxidation of ABTS, resulting in the absorption at 417 nm decreased. Moreover, the quenching effect of oxABTS on NCDs is weakened, and the fluorescence at 402 nm is restored. Therefore, based on the change of absorption at 417 nm and fluorescence at 402 nm, the fluorometric and colorimetric dual-mode sensing method can be used for the determination of acarbose and voglibose that are the inhibitors of α-glu.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125328DOI Listing

Publication Analysis

Top Keywords

dual-mode sensing
12
carbon quantum
8
quantum dots
8
detection α-glucosidase
8
fluorometric colorimetric
8
colorimetric dual-mode
8
absorption 417 nm
8
fluorescence 402 nm
8
sensing system
4
system based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!