This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137639DOI Listing

Publication Analysis

Top Keywords

curcumin-loaded pickering
8
pea protein
8
maillard reaction
8
pickering nanoemulsions
8
stabilized ppi-dx
8
ppi-dx
5
physicochemical characterization
4
characterization environmental
4
environmental stability
4
stability curcumin-loaded
4

Similar Publications

Effect of cationized guar gum on stability and bioaccessibility of curcumin-loaded Pickering emulsion stabilized by starch nanoparticles.

Food Chem

January 2025

Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, South Korea; Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

To enhance stability and bioaccessibility of curcumin in Pickering emulsions stabilized by starch nanoparticles (SNP), cationized guar gum (CGG) was incorporated into the emulsion. Zeta potential results revealed that SNP and CGG formed electrostatic interactions, resulting in stable interfacial layer with higher hydrophobicity. Adding 0.

View Article and Find Full Text PDF

Multiphase Pickering emulsions, including two or more active agents, are of great importance to effectively manage complicated wounds. However, current strategies based on Pickering emulsions are still unsatisfying since they involve only stabilization by inactive particles and encapsulation of the hydrophobic drugs in the oil phase. Herein, thyme essential oil (TEO) was encapsulated in the shell of functional tea polyphenol (TP)-curcumin (Cur) nanoparticles (TC NPs) to exemplarily develop a novel Pickering emulsion (TEO/TC PE).

View Article and Find Full Text PDF

Octenyl succinic anhydride tigernut starch: Structure, physicochemical properties and stability of curcumin-loaded Pickering emulsion.

Int J Biol Macromol

August 2024

College of Food Science and Engineering, Changchun University, No. 6543, Weixing Rd, Changchun 130022, Jilin Province, China. Electronic address:

In recent years, there has been increasing attention to starch particle-stabilized Pickering emulsions. In this study, the tigernut starch (TNS) was isolated from the tigernut meal, and further octenyl succinic anhydride tigernut starch (OSATNS) was prepared by a semi-dry method. The structure of OSATNS was analyzed and characterized by degrees of substitution (DS), contact angle, SEM, and FTIR.

View Article and Find Full Text PDF

Influence of carboxymethyl cellulose on the stability, rheology, and curcumin bioaccessibility of high internal phase Pickering emulsions.

Carbohydr Polym

June 2024

School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China. Electronic address:

Recently, there has been a focus on using biopolymer-based particles to stabilize high internal phase Pickering emulsions (HIPPEs) due to the notable advances in biocompatibility and biodegradability. In this work, the complex particles of peanut protein isolate and carboxymethyl cellulose (CMC) with various substitution degrees (DS; 0.7 and 0.

View Article and Find Full Text PDF

In the field of preparing cosmetic formulations, recent advances recommend the usage of excipients derived from biocompatible materials. In this context, the present study aimed to prepare and characterize the curcumin-loaded Pickering emulsion for possible applications in cosmetic formulation. The coconut oil which is often the component of skin care formulations is used as the oily phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!