In addition to their beneficial effects on plant physiology, multi-walled carbon nanotubes (MWCNTs) are harmful to plants in elevated concentrations. This study compared the effects of two doses of MWCNT (10 and 80 mg/L) in Brassica napus and Solanum lycopersicum seedlings focusing on nitro-oxidative processes. The presence of MWCNTs was detectable in the root and hypocotyl of both species. Additionally, transmission electron microscopy analysis revealed that MWCNTs are heavily transformed within the root cells forming large aggregates. The uptake of MWCNTs negatively affected root viability and root cell proliferation of both species, but more intense toxicity was observed in S. lycopersicum compared to B. napus. The presence of MWCNT triggered more intense protein carbonylation in the relative sensitive S. lycopersicum, where increased hydrogen peroxide levels were observed. Moreover, MWCNT exposure increased the level of physiological protein tyrosine nitration which was more intense in S. lycopersicum where notable peroxynitrite accumulation occurred. These suggest for the first time that MWCNT triggers secondary nitro-oxidative stress which contributes to its toxicity. Moreover, the results indicate that the extent of the nitro-oxidative processes is associated with the extent of MWCNT toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115633 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Türkiye; BAUZYME Biotechnology Co., Gebze Technical University Technopark, 41400, Gebze, Kocaeli, Türkiye. Electronic address:
α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China.
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!