Potential Energy Surface and Bound States of Ne-Li(Σ) van der Waals Complex Based on Ab Initio Calculations.

J Phys Chem A

Laboratory of Interfaces and Advanced Materials, Physics Department, Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia.

Published: November 2023

Theoretical studies of the potential energy surface and vibrational bound states calculations were performed for the ground state of the Ne-Li(Σ) van der Waals (vdW) complex. The intermolecular interactions were investigated by using an accurate monoconfigurational RCCSD() method and large basis sets (aug-cc-pVnZ, = T, Q, 5), extrapolated to the complete basis set (CBS) limit. In turn, the obtained raw data from RCCSD(T)/CBS(Q5) calculations were numerically interpolated using the Morse + vdW model and the Reproducing Kernel Hilbert Space (RKHS) polynomial method to generate analytic expressions for the 2D-PES. The RKHS interpolated PES was then used to assess the bound states of the Ne-Li(Σ) system through nuclear quantum calculations. By studying the aspect of the potential energy surface, the analysis sheds light on the behavior of the Ne-Li(Σ) complex and its interactions between repulsive and attractive forces with other particles. By examining the vibrational states and wave functions of the system, the researchers were able to gain a better understanding of the behavior of the Ne-Li(Σ) complex. The calculated radial and angular distributions for all even and odd symmetries are discussed in detail. We observe that the radial distributions exhibit a more complicated nodal structure, representing stretching vibrational behavior in the neon atom along its radial coordinate. For the highest bound states, the situation is very different, and the energies surpass the angular barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641847PMC
http://dx.doi.org/10.1021/acs.jpca.3c03811DOI Listing

Publication Analysis

Top Keywords

bound states
16
potential energy
12
energy surface
12
states ne-liΣ
8
ne-liΣ van
8
van der
8
der waals
8
behavior ne-liΣ
8
ne-liΣ complex
8
states
5

Similar Publications

Chikungunya virus (CHIKV), an enveloped positive-sense RNA virus, is a member of the alphaviruses and cause fever and arthralgia in humans. We performed genome-wide CRISPR/Cas9-based screens and identified Y-box binding protein 1 (YBX1) as an essential cellular factor for CHIKV. Deficiency of YBX1 inhibited CHIKV RNA replication and impaired virus production.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Atomic-level simulations are widely used to study biomolecules and their dynamics. A common goal in such studies is to compare simulations of a molecular system under several conditions-for example, with various mutations or bound ligands-in order to identify differences between the molecular conformations adopted under these conditions. However, the large amount of data produced by simulations of ever larger and more complex systems often renders it difficult to identify the structural features that are relevant to a particular biochemical phenomenon.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.

View Article and Find Full Text PDF

Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Strain.

J Agric Food Chem

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!