Neutrophils are the most abundant granuloytes, are phenotypically heterogeneous, and exert detrimental or protective roles during antiviral response. Dengue virus has been reported to activate neutrophils. However, the effect of the dengue virus on the neutrophil phenotypes, survival, and release of inflammatory secretome is yet to be understood. Herein, we investigated the effect of dengue virus serotype 2 (DV-2) on effector functions of naïve neutrophils and studied the impact of its secretome on different immune cells. We found that DV-2 activates purified human neutrophils and causes a significant shift toward the CD16bright/CD62Ldim subtype in a multiplicity of infection and time-dependent manner. These phenotypically altered neutrophils show delayed apoptosis through nuclear factor κB and PI3K pathways and have decreased phagocytic capacity. Treatment of neutrophils with myeloperoxidase and PAD4 inhibitor before DV-2 incubation significantly reduced DV-2-induced double-stranded DNA release, suggesting that myeloperoxidase and PAD4 were involved at early stages for the neutrophil activation and double-stranded DNA release. We also report that DV-2-stimulated neutrophil secretome had a significant effect on viral infection, platelet activation, and naïve neutrophil survival via binding of tumor necrosis factor α to tumor necrosis factor receptor 1/2 receptors. Furthermore, incubation of endothelial cells with the DV-2-stimulated neutrophil secretome potentially inhibits proliferation and wound healing capacity and induces endothelial cell death, which can contribute to endothelial barrier dysfunction. In conclusion, the neutrophil-DV-2 interaction modulates the phenotype of neutrophils and the release of prosurvival and antiviral secretome that may act as a double-edged sword during dengue pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jleuko/qiad133 | DOI Listing |
PLoS One
January 2025
Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
Dengue remains the most rapidly advancing vector-borne disease in the world, and while the disease burden is predominantly in low-to-middle-income countries, the association with poverty remains in question. Consequently, a study was undertaken to evaluate the prevalence of anti-dengue antibodies among individuals residing in the People's Housing Program (PPR), a government-sponsored low-cost housing initiative targeting low-income earners. This type of public housing often faces challenges, including substandard housing facilities.
View Article and Find Full Text PDFBackground: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.
Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.
Curr Pharm Biotechnol
January 2025
Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of the Environment, The University of Queensland, Brisbane, QLD, Australia.
Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!