Heat Transfer Enhancement in Tree-Structured Polymer Linked Gold Nanoparticle Networks.

J Phys Chem Lett

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Published: November 2023

Human brains use a tree-like neuron network for information processing at high efficiency and low energy consumption. Tree-like structures have also been engineered to enhance mass and heat transfer in various applications. In this work, we reveal the heat transfer mechanism in tree-structured polymer linked gold nanoparticle (AuNP) networks using atomistic simulations. We report both upward and downward heat fluxes between root and leaf nodes in tree-structured polyethylene (PE) and poly(-phenylene) (PPP) linked AuNP networks at tree levels from 1 to 5. We found that the heat conductance increases with an increasing polymer tree level. The heat transfer enhancement is due to the resulting increase in the low-frequency vibrational modes. This and other thermal properties are affected by the location of the AuNPs in the tree. Moreover, complex tree structures with at least five levels were found to be robust in the sense that disabling half of the leaves did not change the overall heat conductance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10642580PMC
http://dx.doi.org/10.1021/acs.jpclett.3c02367DOI Listing

Publication Analysis

Top Keywords

heat transfer
16
transfer enhancement
8
tree-structured polymer
8
polymer linked
8
linked gold
8
gold nanoparticle
8
aunp networks
8
heat conductance
8
heat
7
enhancement tree-structured
4

Similar Publications

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

High performance liquid chromatography (HPLC) is a key analytical technique that is used in a number of fields. Improving the separation efficiency, stability, and universality of HPLC has been a continuing analytical-chemistry focus. In chromatographic separation, factors such as the composition and ratio of the mobile phase, the type of stationary phase, and the dimensions of the chromatographic column significantly affect the separation efficiency.

View Article and Find Full Text PDF

Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups.

ACS Nano

January 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.

View Article and Find Full Text PDF

Quantum Dot Luminescence Microspheres Enable Ultra-Efficient and Bright Micro-LEDs.

Adv Mater

January 2025

Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.

Quantum dot (QD)-converted micrometer-scale light-emitting diodes (micro-LEDs) are regarded as an effective solution for achieving high-performance full-color micro-LED displays because of their narrow-band emission, simplified mass transfer, facile drive circuits, and low cost. However, these micro-LEDs suffer from significant blue light leakage and unsatisfactory electroluminescence properties due to the poor light conversion efficiency and stability of the QDs. Herein, the construction of green and red QD luminescence microspheres with the simultaneously high conversion efficiency of blue light and strong photoluminescence stability are proposed.

View Article and Find Full Text PDF

Improving ocean reanalyses of observationally sparse regions with transfer learning.

Sci Rep

January 2025

Institute of Oceanography, Center for Earth System Sustainability, Universität Hamburg, Hamburg, Germany.

Oceanic subsurface observations are sparse and lead to large uncertainties in any model-based estimate. We investigate the applicability of transfer learning based neural networks to reconstruct North Atlantic temperatures in times with sparse observations. Our network is trained on a time period with abundant observations to learn realistic physical behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!