It is urgent to mitigate the environmental impacts resulting from agriculture, especially in highly biodiverse and threatened areas, as the Brazilian Cerrado. We aim to investigate whether root acid phosphatase activity is alternative plant strategies for nutrient acquisition in maize genotypes cultivated under fertilized and unfertilized conditions in Brazil, potentially contributing to reducing the use of phosphate fertilizers needed for production. Three experiments were performed: the first was conducted in a glasshouse, with 17 experimental maize inbred lines and two phosphorus (P) treatments; the second in the field, with three maize inbred lines and two treatments, one without fertilization and another with NPK fertilization; and the third was also carried out in the field, with 13 commercial hybrids, grown either under NK or under NPK treatment. Plant variables were measured and tested for the response to fertilization, differences amongst genotypes and response to root acid phosphatase activity. The activity of root acid phosphatase was modulated by the availability of P and nitrogen (N) in the soil and promoted grain filling of commercial hybrids in soils with low P availability. These results demonstrate that it is possible to select genotypes that are more adapted to low soil P availability aiming at organic production, or to use genotypes that have high phosphatase activity under P fertilization to reduce the amount of added P needed for maize production in Brazil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610443 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292542 | PLOS |
Plants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China.
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Kilis 7 Aralik University, 79000 Kilis, Türkiye.
: The genus is renowned for its diverse bioactive potential, yet the chemical composition and biological properties of remain inadequately explored. This study aimed to investigate the chemical profile, antioxidant capacity, and enzyme inhibitory activities of methanol extracts from various plant parts of . : Methanol extracts were obtained from leaves, stems, flowers, roots, and aerial portions of .
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Biosciences, Faculty of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions ('' in Japanese), such as clearing heat.
View Article and Find Full Text PDFMolecules
January 2025
Ric Scalzo Institute for Botanical Research, Sonoran University of Health Sciences, Tempe, AZ 85282, USA.
is a perennial medicinal herb with important immunomodulatory and anti-inflammatory properties, especially purported for the alleviation of cold and flu symptoms. Different classes of secondary metabolites of the plant, such as alkylamides, caffeic acid derivatives, polysaccharides, flavonoids, and glycoproteins, are believed to be biologically and pharmacologically active. Although previous research suggests that the alkylamides present in may be responsible for reducing the symptoms associated with the common cold or flu through their immunomodulatory activity, the roles of specific alkylamides and their targets (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!