In Brief: Fertility has decreased due to advanced maternal age and the rising prevalence of the metabolic syndrome. Using quantitative image analysis methods, we show that these factors are associated with delayed preimplantation embryo development in a mouse model.

Abstract: Delayed maternal age, obesity and diabetes are associated with reduced fertility. We investigated how age and obesity/metabolic syndrome impact fertility and hypothesized that its decrease is due to defects in preimplantation embryo development. Three groups of female C57Bl6 mice (12 weeks, 9 months and 1 year old) were fed either a high-fat diet for 8 weeks, to induce obesity and the metabolic syndrome, or a control chow diet. Body weight and composition, glucose tolerance and insulin resistance were assessed. Fecundity was evaluated by mating and pregnancy rates, as well as by the number of embryos. Embryo quality was assessed morphologically, and cell fate composition was analysed in preimplantation embryos by state-of-the-art single-cell quantitative confocal image analysis. The high-fat diet was associated with increased adiposity, glucose intolerance and insulin resistance, especially in the older mice. Fecundity was affected by age more than by the diet. Both age and high-fat diet were associated with reduced cell fate allocation, indicating a delay in the preimplantation embryo development, and with increased expression of GATA3, an inhibitor of placentation. These results support that age and the metabolic syndrome reduce fertility through mechanisms which are present at conception or very early in pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-23-0024DOI Listing

Publication Analysis

Top Keywords

preimplantation embryo
16
embryo development
16
maternal age
12
metabolic syndrome
12
high-fat diet
12
age obesity
8
delay preimplantation
8
development mouse
8
image analysis
8
associated reduced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!