Biomass is an attractive raw material for the production of fuel oil and chemical intermediates due to its abundant reserves, low price, easy biodegradability, and renewable use. Hydroxymethylfurfural (5-HMF) is a valuable platform chemically derived from biomass that has gained significant research interest owing to its economic and environmental benefits. In this review, recent advances in biomass catalytic conversion systems for 5-HMF production were examined with a focus on the catalysts selection and feedstocks' impact on the 5-HMF selectivity and yield. Specifically, the potential of zeolite-based catalysts for efficient biomass catalysis was evaluated given their unique pore structure and tunable (Lewis and Brønsted) acidity. The benefits of hierarchical modifications and the interactions between porosity and acidity in zeolites, which are critical factors for the development of green catalytic systems to convert biomass to 5-HMF efficiently, were summarized and assessed. This Review suggests that zeolite-based catalysts hold significant promise in facilitating the sustainable utilization of biomass resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202300399 | DOI Listing |
Biopolymers
March 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.
The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".
View Article and Find Full Text PDFBiotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!