Phonon Scattering Engineered Unconventional Thermal Radiation at the Nanoscale.

Nano Lett

School of Mechanical Engineering and the Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2088, United States.

Published: November 2023

We show that engineering phonon scattering, such as through isotope enrichment and temperature modulation, offers the potential to achieve unconventional radiative heat transfer between two boron arsenide bulks at the nanoscale, which holds promise in applications for nonlinear thermal circuit components. A heat flux regulator is proposed, where the temperature window for stabilized heat flux exhibits a wide tunability through phonon scattering engineering. Additionally, we propose several other nonlinear thermal radiative devices, including a negative differential thermal conductance device, a temperature regulator, and a thermal diode, all benefiting from the design space enabled by isotope and temperature engineering of the phonon linewidth. Our work highlights the capability of temperature and isotope engineering in designing and optimizing nonlinear radiative thermal devices and demonstrates the potential of phonon engineering in thermal radiative transport.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c03375DOI Listing

Publication Analysis

Top Keywords

phonon scattering
12
engineering phonon
8
nonlinear thermal
8
heat flux
8
thermal radiative
8
thermal
7
phonon
5
engineering
5
temperature
5
scattering engineered
4

Similar Publications

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

CuZnSn(S,Se) (CZT(S,Se)) thin films exhibit the characteristics necessary to be effective absorbers in solar cells. In this report, the room temperature experimental Raman scattering spectra, recorded at different excitation wavelengths, are systematically analyzed theoretically using the results of DFT harmonic frequencies calculations at the Γ-point for various modifications of kesterite (KS), stannite (ST), and pre-mixed Cu-Au (PMCA) crystal structures. The specific anharmonism-induced features in the spectra of CZT(S,Se) crystals are identified, and the spectral lineshapes at varied strengths of anharmonic interaction are simulated.

View Article and Find Full Text PDF

Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.

View Article and Find Full Text PDF

Magnetic phase transition and spin-phonon coupling effect of antiferromagnetic NiO flakes probed by Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:

Two-dimensional antiferromagnetic materials have attracted wide attention in both performance and application, which are of great significance for spin valves and next-generation magnetic random access memory devices. The spin-phonon coupling effect plays a crucial role in magnon dynamics. However, there is still a lack of research on the spin-phonon coupling effect of two-dimensional antiferromagnetic flakes.

View Article and Find Full Text PDF

Low-Frequency Noise Related to the Scattering Effect in p-Type Copper(I) Oxide Thin-Film Transistors.

ACS Appl Mater Interfaces

December 2024

Department of Electronic Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.

In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!