Filoviruses are the causative agents of severe and often fatal hemorrhagic disease in humans. Měnglà virus (MLAV) is a recently reported filovirus, isolated from fruit bats that is capable to replicate in human cells, representing a potential risk for human health. An in-depth structural and functional knowledge of MLAV proteins is an essential step for antiviral research on this virus that can also be extended to other emerging filoviruses. In this study, we determined the first crystal structures of the C-terminal domain (CTD) of the MLAV nucleoprotein (NP), showing important similarities to the equivalent domain in MARV. The structural data also show that the NP CTD has the ability to form large helical oligomers that may participate in the control of cytoplasmic inclusion body formation during viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714759PMC
http://dx.doi.org/10.1128/spectrum.02373-23DOI Listing

Publication Analysis

Top Keywords

c-terminal domain
8
měnglà virus
8
structural insights
4
insights nucleoprotein
4
nucleoprotein c-terminal
4
domain měnglà
4
virus filoviruses
4
filoviruses causative
4
causative agents
4
agents severe
4

Similar Publications

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: As amyloid-β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer's disease, there has been extensive investigation into Aβ-targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ-targeting compounds.

View Article and Find Full Text PDF

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

The heterodimeric Rab3GAP complex is a guanine nucleotide exchange factor (GEF) for the Rab18 GTPase that regulates lipid droplet metabolism, ER-to-Golgi trafficking, secretion, and autophagy. Why both subunits of Rab3GAP are required for Rab18 GEF activity and the molecular basis of how Rab3GAP engages and activates its cognate substrate are unknown. Here we show that human Rab3GAP is conformationally flexible and potentially autoinhibited by the C-terminal domain of its Rab3GAP2 subunit.

View Article and Find Full Text PDF

GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!