Lichens are symbiotic organisms made up of alga/cyanobacterium and fungus. We investigated antioxidant, antibacterial and anticancer properties of two lichen compounds, atranorin and salazinic acid, and five lichen species: Heterodermia boryi, Heterodermia diademata, Heterodermia hypocaesia, Parmotrema reticulatum, and Stereocaulon foliolosum. Free radical scavenging, Ferric reducing potential, Nitric oxide scavenging, and Trolox equivalent capacity were used to measure antioxidant activity. Strong radical scavenging action was demonstrated by atranorin and salazinic acid, with IC values of 39.31 μM and 12.14 μM, respectively. The Minimum Inhibitory Concentration (MIC) assay based on resazurin, was used to measure antibacterial activity. Parmotrema reticulatum demonstrated significant antibacterial activity against Raoultella planticola with MIC of 7.8 μg/mL. Cytotoxicity assay on breast cancer cell line was used to assess anticancer activity. To further understand the binding locations on the target proteins Er (Estrogen Receptor alpha), EGFR (Epidermal Growth Factor Receptor), mTOR (Mammalian Target of Rapamycin), and PgR (Progesterone Receptor), molecular docking experiments were conducted. Docking study showed that the binding energies of atranorin and salazinic acid with mTOR were -5.31 kcal/mol and -3.43 kcal/mol, respectively. The results suggest that atranorin has the potential to be a multitargeted molecule with natural antioxidant, antibacterial, and anticancer properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202301229DOI Listing

Publication Analysis

Top Keywords

atranorin salazinic
16
salazinic acid
16
antioxidant antibacterial
12
antibacterial anticancer
12
lichen compounds
8
compounds atranorin
8
anticancer properties
8
parmotrema reticulatum
8
radical scavenging
8
antibacterial activity
8

Similar Publications

The non-specificity of contemporary cancer therapeutics has enticed us to develop safer, anticancer alternatives from natural resources. Lichens are unique natural entities which have long been neglected for explorations in cancer therapy, despite their vast potential. Our present study aims to investigate the anti-cancer potential of a wild lichen Parmelinella wallichiana.

View Article and Find Full Text PDF

This investigation examined the antioxidant, antimicrobial, cytotoxic, and anti-inflammatory activities of the acetone extract of the lichen (L.) W.L.

View Article and Find Full Text PDF

The present study was intended for the identification of secondary metabolites in acetone extract of the lichen using UPLC-ESI-QToF-MS/MS and the detection of bioactive compounds. This study led to the identification of 22 metabolites based on their MS/MS spectra, accurate molecular masses, molecular formula from a comparison of the literature database (DNP), and fragmentation patterns. In addition, potent antioxidant and α-glucosidase inhibitory potentials of acetone extract of motivated us to isolate 10 metabolites, which were characterized as salazinic acid (), norlobaridone (), atranorin (), lecanoric acid (), lichesterinic acid (), protolichesterinic acid (), methyl hematommate (), iso-rhizonic acid (), atranol (), and methylatratate ( based on their spectral data.

View Article and Find Full Text PDF

Lichens are symbiotic organisms made up of alga/cyanobacterium and fungus. We investigated antioxidant, antibacterial and anticancer properties of two lichen compounds, atranorin and salazinic acid, and five lichen species: Heterodermia boryi, Heterodermia diademata, Heterodermia hypocaesia, Parmotrema reticulatum, and Stereocaulon foliolosum. Free radical scavenging, Ferric reducing potential, Nitric oxide scavenging, and Trolox equivalent capacity were used to measure antioxidant activity.

View Article and Find Full Text PDF

Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however, scarce. The study aimed at analyzing the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!