Anthropogenic nitrogen (N) loading alters soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances, likely leading to substantial changes in soil nitrification. However, the factors and mechanisms determining the responses of soil AOA:AOB and nitrification to N loading are still unclear, making it difficult to predict future changes in soil nitrification. Herein, we synthesize 68 field studies around the world to evaluate the impacts of N loading on soil ammonia oxidizers and nitrification. Across a wide range of biotic and abiotic factors, climate is the most important driver of the responses of AOA:AOB to N loading. Climate does not directly affect the N-stimulation of nitrification, but does so via climate-related shifts in AOA:AOB. Specifically, climate modulates the responses of AOA:AOB to N loading by affecting soil pH, N-availability and moisture. AOB play a dominant role in affecting nitrification in dry climates, while the impacts from AOA can exceed AOB in humid climates. Together, these results suggest that climate-related shifts in soil ammonia-oxidizing community maintain the N-stimulation of nitrification, highlighting the importance of microbial community composition in mediating the responses of the soil N cycle to N loading.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.16989DOI Listing

Publication Analysis

Top Keywords

soil ammonia-oxidizing
12
shifts soil
8
ammonia-oxidizing community
8
community maintain
8
nitrification
8
soil
8
changes soil
8
soil nitrification
8
responses soil
8
loading soil
8

Similar Publications

Soil Microbial Communities Changes Along Depth and Contrasting Facing Slopes at the Parque Nacional La Campana, Chile.

Microorganisms

December 2024

Departamento de Ciencias y Geografía, Universidad de Playa Ancha, Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile.

Article Synopsis
  • The Parque Nacional La Campana was found to have a rich microbial diversity in its soil, with a study focused on areas with sclerophyllous forests and xerophytic shrublands.
  • Variation in microbial communities was influenced more by different vegetation types and soil conditions on opposing slopes rather than just the soil depth itself.
  • Key microbial taxa differed significantly between the two environments, with specific fungi and bacteria thriving in each, indicating the impact of the local ecosystem on microbial life and functions.
View Article and Find Full Text PDF

This study investigates the mechanisms driving maize compensatory growth upon post-drought, to reveal how the root's original cytokinins are regulated by the two-fold roles of heterotrophic bacteria with ammonia-oxidizing (HAOB) capabilities. The HAOB' dual roles encompass influencing root cytokinin synthesis and transport through nitrification and a direct pathway. Experiment 1 involved introducing the application of varying amounts of NO to the roots to examine how nitrification affects cytokinin roots-to-leaves transport.

View Article and Find Full Text PDF

Ammonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.

View Article and Find Full Text PDF

Land stewards in dryland ecosystems across the western U.S. face challenges to manage the exotic grass (cheatgrass), which is a poor forage, is difficult to remove, and increases risk of catastrophic fire.

View Article and Find Full Text PDF

The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!